The European Physical Journal B

, Volume 84, Issue 3, pp 439–449 | Cite as

Size effect in spin-crossover systems investigated by FORC measurements, for surfacted [Fe(NH2-trz)3](Br)2·3H2O nanoparticles: reversible contributions and critical size

  • A. Rotaru
  • F. Varret
  • A. Gindulescu
  • J. Linares
  • A. Stancu
  • J. F. Létard
  • T. Forestier
  • C. Etrillard
Regular Article Mesoscopic and Nanoscale Systems


We investigated the thermal transition of coated nano-particles of the title compound, on a set of samples of average diameter ⟨d⟩ ~ 30, 50, 70, 110 nm, with rather broad size distributions. As expected, the width of the major hysteresis loop was an increasing function of ⟨d⟩. We recorded first-order reversal curves (FORC), the initial parts of which displayed a finite slope, revealing the presence of reversible contributions expected from particles smaller than the critical size d C associated with the collapse of the hysteresis loop. Kinetic effects were also evidenced thanks to isothermal stages. Reversibility of the FORC curves at the vicinity of the reversal temperature was controlled. Thanks to the reversibility property we could determine the reversible contributions to the total response of all samples and derive the corresponding d C values. Consistent results were obtained by accounting for an anhysteretic contribution from the large particles, leading to an accurate determination d C  ~ 45−50 nm, much better than the width of the size distributions.


Hysteresis Loop Critical Size FORC Curve Reversal Temperature Hysteresis Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Topics in Current Chemistry, Spin Crossover in Transition Metal Compounds I-III, edited by P. Gütlich, H.A. Goodwin (Springer, Heidelberg, Berlin, 2004), 233–235 Google Scholar
  2. 2.
    J.-F. Létard,P. Guionneau,L. Goux-Capes, in reference [1], Top. Curr. Chem. 235, 221 (2004)CrossRefGoogle Scholar
  3. 3.
    J.-F. Létard, N. Daro, O. Nguyen, Nanoparticules d’un composé à transition de spin (CNRS, France Brevet FR 2005/0512476 (2005-08-12)), International Patent WO 2007/065996 (2007-06-14), United State Patent US 2008/0311401 (2008-12-18), Japon Patent JP 2009/0519876 (2008-12-29), European Patent EP 2010/ 06841859.9 (2010-01-20)Google Scholar
  4. 4.
    A. Bousseksou,G. Molnar,L. Salmon,W. Nicolazzi, Chem. Soc. Rev. 40 3313 (2011)CrossRefGoogle Scholar
  5. 5.
    T. Kawamoto, S. Abe, Chem. Commun. 3933 (2005) Google Scholar
  6. 6.
    A. Rotaru,J. Linares,E. Codjovi,J. Nasser,A. Stancu, J. Appl. Phys. 103, 07B908 (2008)CrossRefGoogle Scholar
  7. 7.
    C. Enachescu, L. Stoleriu, A. Stancu, A. Hauser, Phys. Rev. Lett. 102, 257204 (2009) CrossRefADSGoogle Scholar
  8. 8.
    C. Enachescu, M. Nishino, S. Miyashita, A. Hauser, A. Stancu, L. Stoleriu, Europhys. Lett. 91, 27003 (2010) CrossRefADSGoogle Scholar
  9. 9.
    A. Murukoa, K. Boukheddaden, J. Linarès, F. Varret, Phys. Rev. B 84, 054119 (2011) CrossRefADSGoogle Scholar
  10. 10.
    O. Fouché, J. Degert, N. Daro, T. Forestier, C. Desplanches, J.-F. Létard, E. Freysz, presented at European Conf. on Molecular Magnetism (Tomar, Portugal, 2006)Google Scholar
  11. 11.
    E. Coronado, J.R. Galan-Mascaros, M. Monrabal-Capilla, J. Garcia-Martinez, P. Pardo-Ibanez, Adv. Mat. 19, 1359 (2007) CrossRefGoogle Scholar
  12. 12.
    J. Larionova, L. Salmon, Y. Guari, A. Tokarev, K. Molvinger, G. Molnar, A. Bousseksou, Angew. Chem. Int. Ed. 47, 8236 (2008) CrossRefGoogle Scholar
  13. 13.
    I. Boldog, A.B. Gaspar, V. Martínez, P. Pardo-Ibañez, V. Ksenofontov, A. Bhattacharjee, P. Gütlich, J.A. Real, Angew. Chem. Int. Ed. 47, 6433 (2008) CrossRefGoogle Scholar
  14. 14.
    F. Volatron, L. Catala, E. Rivière, A. Gloter, O. Stéphan, T. Mallah, Inorg. Chem. 47, 6584 (2008) CrossRefGoogle Scholar
  15. 15.
    T. Forestier, S. Mornet, N. Daro, T. Nishihara, S. Mouri, K. Tanaka, O. Fouche, E. Freysz, J.F. Letard, Chem. Commun. 36, 4327 (2008) CrossRefGoogle Scholar
  16. 16.
    T. Forestier, A. Kaiba, S. Pechev, D. Denux, P. Guionneau, C. Etrillard, N. Daro, E. Freysz, J.-F. Létard, Chem. Eur. J. 15, 6122 (2009) CrossRefGoogle Scholar
  17. 17.
    M.S. Alam, M. Stocker, K. Gieb, P. Müller, M. Haryano, K. Student, A. Grohman, Angew. Chem. Int. Ed. 49, 1159 (2010) CrossRefGoogle Scholar
  18. 18.
    C. Arnaud, T. Forestier, N. Daro, E. Freysz, J.-F. Létard, G. Pauliat, G. Roosen, Chem. Phys. Lett. 470, 131 (2009) CrossRefADSGoogle Scholar
  19. 19.
    C.R. Pike, A.P. Roberts, K.L. Verosub, J. Appl. Phys. 85, 6640 (1999) ADSGoogle Scholar
  20. 20.
    L.G. Lavrenova, N.G. Yudina, V.N. Ikorskii, V.A. Varnek, I.M. Oglezneva, S.V. Larionov, Polyhedron 14, 1333 (1995) CrossRefGoogle Scholar
  21. 21.
    J.-L. Dormann, D. Foriani, J. Magn. Magn. Mater. 140-144, 415 (1995) CrossRefADSGoogle Scholar
  22. 22.
    A. Rotaru, Ph.D. thesis, University of Versailles, 2009Google Scholar
  23. 23.
    O. Kahn, J. Kröber, C. Jay, Adv. Mater. 4, 718 (1992)CrossRefGoogle Scholar
  24. 24.
    J. Kröber, J.-P. Audière, R. Claude, E. Codjovi, O. Kahn, J.G. Haasnoot, F. Grolière, C. Jay, A. Bousseksou, J. Linarès, F. Varret, Chem. Mater. 6, 1404 (1994)CrossRefGoogle Scholar
  25. 25.
    V. Mishra, H. Mishra, R. Mukherjee, E. Codjovi, J. Linarès, J.-F. Létard, C. Desplanches, C. Baldé, C. Enachescu, F. Varret, Dalton Trans. 36, 7462 (2009) CrossRefGoogle Scholar
  26. 26.
    R. Tanasa, C. Enachescu, A. Stancu, J. Linares, E. Codjovi, F. Varret, Phys. Rev. B 71, 14431 (2005) CrossRefADSGoogle Scholar
  27. 27.
    C. Enachescu, R. Tanasa, A. Stancu, F. Varret, J. Linares, E. Codjovi, Phys. Rev. B 72, 054413 (2005) CrossRefADSGoogle Scholar
  28. 28.
    A. Rotaru, J. Linares, F. Varret, E. Codjovi, R. Tanasa, C. Enachescu, A. Stancu, J. Haasnoot, Phys. Rev. B 83, 224107 (2011) CrossRefADSGoogle Scholar
  29. 29.
    I.D. Mayergoyz, J. Appl. Phys. 69, 4829 (1991) CrossRefADSGoogle Scholar
  30. 30.
    I. Bodale, L. Stoleriu, A. Stancu, IEEE Trans. Magn. 47, 192 (2011)CrossRefADSGoogle Scholar
  31. 31.
    C.R. Pike, Phys. Rev. B 68, 104424 (2003) CrossRefADSGoogle Scholar
  32. 32.
    J. Linares, C. Enachescu, K. Boukheddaden, F. Varret, Polyhedron 22, 2453 (2003) CrossRefGoogle Scholar
  33. 33.
    S. Neville, C. Etrillard, S. Saket, J.-F. Létard, Eur. J. Inorg. Chem. 2, 282 (2010)CrossRefGoogle Scholar
  34. 34.
    C. Etrillard, Ph.D. thesis, University of Bordeaux, 2011, in preparationGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • A. Rotaru
    • 1
    • 2
    • 3
  • F. Varret
    • 1
  • A. Gindulescu
    • 1
    • 3
  • J. Linares
    • 1
  • A. Stancu
    • 2
  • J. F. Létard
    • 4
  • T. Forestier
    • 4
  • C. Etrillard
    • 4
  1. 1.Groupe d’Étude de la Matière Condensée (GEMaC), CNRS-UMR 8635Université de Versailles Saint-QuentinVersailles CedexFrance
  2. 2.Department of PhysicsAlexandru Ioan Cuza UniversityIasiRomania
  3. 3.Faculty of Electrical Engineering and Computer Science“Stefan cel Mare” UniversitySuceavaRomania
  4. 4.ICMCB, CNRS-UPR 9048Université de Bordeaux 1PessacFrance

Personalised recommendations