Skip to main content
Log in

Thermodynamic properties of the superconductivity in quasi-two-dimensional Dirac electronic systems

  • Mesoscopic and Nanoscale Systems
  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The thermodynamic properties of superconducting Dirac electronic systems is analyzed in the vicinity of quantum critical point. The system is characterized by a quantum critical point at zero doping, such that the critical temperature vanishes below some finite value of interaction strength. It is found that the specific heat jump of the system largely deviates from the conventional BCS theory value in the vicinity of quantum critical point. We investigated the region of applicability of the mean-field theory using the Ginzburg-Landau functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Semenoff, Phys. Rev. Lett. 53, 2449 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  2. V.P. Gusynin, S.G. Sharapov, Phys. Rev. B 71, 125124 (2005)

    Article  ADS  Google Scholar 

  3. V.P. Gusynin, S.G. Sharapov, Phys. Rev. B 73, 245411 (2006)

    Article  ADS  Google Scholar 

  4. E.C. Marino, L.H.C.M. Nunes, Nucl. Phys. B 741, 404 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. S.H. Simon, P.A. Lee, Phys. Rev. Lett. 78, 1548 (1997)

    Article  ADS  Google Scholar 

  6. E.J. Ferrer, V.P. Gusynin, V. de la Incera, Mod. Phys. Lett. B 16, 107 (2002)

    Article  ADS  Google Scholar 

  7. M. Franz, Z. Te\(\tilde{s}\)anovic, Phys. Rev. Lett. 84, 554 (2000)

    Article  ADS  Google Scholar 

  8. J. Gonzalez, F. Guinea, M.A.H. Vozmediano, Phys. Rev. Lett. 77, 3589 (1996)

    Article  ADS  Google Scholar 

  9. Y. Zhang et al., Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  10. K.S. Novoselov et al., Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  11. J. Gonzalez, F. Guinea, M.A.H. Vozmediano, Phys. Rev. Lett. 69, 172 (1992)

    Article  ADS  Google Scholar 

  12. J. Gonzalez, F. Guinea, M.A.H. Vozmediano, Nucl. Phys. B 406, 771 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Y.E. Lozovik, A.A. Sokolik, Eur. Phys. J. B 73, 195 (2010)

    Article  ADS  Google Scholar 

  14. Y.E. Lozovik, S.L. Ogarkov, A.A. Sokovik, JETP 110, 49 (2010)

    Article  ADS  Google Scholar 

  15. N.M.R. Peres, F. Guinea, A.H. Castro Neto, Ann. Phys. 321, 1559 (2006)

    Article  ADS  Google Scholar 

  16. N.M.R. Peres, A.H. Castro Neto, F. Guinea, Phys. Rev. B 73, 239902 (2006)

    Article  ADS  Google Scholar 

  17. N.M.R. Peres, A.H. Castro Neto, F. Guinea, Phys. Rev. B 73, 245426 (2006)

    Article  ADS  Google Scholar 

  18. N.M.R. Peres, A.H. Castro Neto, F. Guinea, Phys. Rev. B 73, 205408 (2006)

    Article  ADS  Google Scholar 

  19. N.B. Kopnin, E.B. Sonin, Phys. Rev. Lett. 100, 246808 (2008)

    Article  ADS  Google Scholar 

  20. N.B. Kopnin, E.B. Sonin, Phys. Rev. B 82, 014516 (2010)

    Article  ADS  Google Scholar 

  21. A.H. Castro Neto, Phys. Rev. Lett. 86, 4382 (2001)

    Article  ADS  Google Scholar 

  22. B. Uchoa, A.H. Castro Neto, G.G. Cabrera, Phys. Rev. B 69, 144512 (2004)

    Article  ADS  Google Scholar 

  23. B. Uchoa, G.G. Cabrera, A.H. Castro Neto, Phys. Rev. B 71, 184509 (2005)

    Article  ADS  Google Scholar 

  24. F.D.M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  25. R.R. da Silva, J.H.S. Torres, Y. Kopelevich, Phys. Rev. Lett. 87, 147001 (2001)

    Article  ADS  Google Scholar 

  26. B. Uchoa, A.H. Castro Neto, Phys. Rev. Lett. 98, 144801 (2007)

    Article  Google Scholar 

  27. A.M. Black-Schaffer, S. Doniach, Phys. Rev. B 75, 134512 (2007)

    Article  ADS  Google Scholar 

  28. C. Honerkamp, Phys. Rev. Lett. 100, 146404 (2008)

    Article  ADS  Google Scholar 

  29. G. Savini, A.C. Ferrari, F. Giustino, Phys. Rev. Lett. 105, 037002 (2010)

    Article  ADS  Google Scholar 

  30. E.C. Marino, L.H.C.M. Nunes, Physica C 460-462, 1101 (2007)

    Article  ADS  Google Scholar 

  31. E.C. Marino, L.H.C.M. Nunes, Nucl. Phys. B 769, 275 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. R.L. Wilthers, J.A. Wilson, J. Phys. C 19, 4809 (1986)

    Article  ADS  Google Scholar 

  33. J.A. Wilson, F.J. Disalvo, S. Mahajam, Adv. Phys. 24, 117 (1975)

    Article  ADS  Google Scholar 

  34. L. Balents, M.P.A. Fisher, C. Nayak, Int. J. Mod. Phys. B 12, 1033 (1998)

    Article  ADS  Google Scholar 

  35. V.L. Berezinskii, Zh. Eksp. Teor. Fiz. 59, 907 (1970)

    Google Scholar 

  36. J. Kosterlitz, D. Thouless, J. Phys. C 6, 1181 (1973)

    Article  ADS  Google Scholar 

  37. V.M. Loktev, V. Turkowski, Phys. Rev. B 79, 233402 (2009)

    Article  ADS  Google Scholar 

  38. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, Inc., 1971)

  39. A. Larkin, A. Varlamov, Theory of fluctuations in superconductors (Oxford Science Publications 2005)

  40. A.Z. Patashinskii, Fluctuation theory of phase transitions (Pergamon Press Ltd, 1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Abah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abah, O., Kiselev, M.N. Thermodynamic properties of the superconductivity in quasi-two-dimensional Dirac electronic systems. Eur. Phys. J. B 82, 47–52 (2011). https://doi.org/10.1140/epjb/e2011-10901-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10901-0

Keywords

Navigation