Skip to main content
Log in

Motifs in co-authorship networks and their relation to the impact of scientific publications

  • Regular Article
  • Focus Section on Frontiers in Network Science: Advances and Applications
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Co-authorship networks, where the nodes are authors and a link indicates joint publications, are very helpful representations for studying the processes that shape the scientific community. At the same time, they are social networks with a large amount of data available and can thus serve as vehicles for analyzing social phenomena in general. Previous work on co-authorship networks concentrates on statistical properties on the scale of individual authors and individual publications within the network (e.g., citation distribution, degree distribution), on properties of the network as a whole (e.g., modularity, connectedness), or on the topological function of single authors (e.g., distance, betweenness). Here we show that the success of individual authors or publications depends unexpectedly strongly on an intermediate scale in co-authorship networks. For two large-scale data sets, CiteSeerX and DBLP, we analyze the correlation of (three- and four-node) network motifs with citation frequencies. We find that the average citation frequency of a group of authors depends on the motifs these authors form. In particular, a box motif (four authors forming a closed chain) has the highest average citation frequency per link. This result is robust across the two databases, across different ways of mapping the citation frequencies of publications onto the (uni-partite) co-authorship graph, and over time. We also relate this topological observation to the underlying social and socio-scientific processes that have been shaping the networks. We argue that the box motif may be an interesting category in a broad range of social and technical networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.S. Kuhn, The Structure of Scientific Revolutions, 1st edn. (University of Chicago Press, Chicago, 1962)

  2. A. Arenas, A. Diaz-Guilera, C.J. Perez-Vicente, Phys. Rev. Lett. 96, 114102 (2006)

    Article  ADS  Google Scholar 

  3. S. Bornholdt, Science 310, 449 (2005)

    Article  Google Scholar 

  4. M. Müller-Linow, C. Hilgetag, M.-T. Hütt, PLoS Comput. Biology 4, e1000190 (2008)

    Article  Google Scholar 

  5. C. Marr, M.-T. Hütt, Phys. Lett. A 373, 546 (2009)

    Article  MATH  ADS  Google Scholar 

  6. N.M. Luscombe, M.M. Babu, H. Yu, M. Snyder, S.A. Teichmann, M. Gerstein, Nature 431, 308 (2004)

    Article  ADS  Google Scholar 

  7. M.J. Herrgard, M.W. Covert, B.O. Palsson, Genome Research 13, 2423 (2003)

    Article  Google Scholar 

  8. C. Marr, M. Geertz, M.-T. Hütt, G. Muskhelishvili, BMC Systems Biology 2, 18 (2008)

    Article  Google Scholar 

  9. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Science 298, 824 (2002)

    Article  ADS  Google Scholar 

  10. U. Alon, Nat. Rev. Genetics 8, 450 (2007)

    Article  Google Scholar 

  11. R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)

    Article  ADS  Google Scholar 

  12. R. Albert, H. Jeong, A.-L. Barabási, Nature 406, 378 (2000)

    Article  ADS  Google Scholar 

  13. O. Brandman, T. Meyer, Science 322, 390 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. S. Pigolotti, S. Krishna, M. Jensen, PNAS 104, 6533 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. S. Shen-Orr, R. Milo, S. Mangan, U. Alon, Nat. Genet. 31, 688 (2002)

    Article  Google Scholar 

  16. O. Brandman, J.E. Ferrell, R. Li, T. Meyer, Science 310, 496 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, U. Alon, Science 303, 1538 (2004)

    Article  ADS  Google Scholar 

  18. K. Klemm, S. Bornholdt, PNAS 102, 18414 (2005)

    Article  ADS  Google Scholar 

  19. P. Kaluza, M. Ipsen, M. Vingron, A.S. Mikhailov, Phys. Rev. E 75, 015101 (2007)

    Article  ADS  Google Scholar 

  20. P. Kaluza, M. Vingron, A.S. Mikhailov, Chaos 18, 026113 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. P. Kaluza, A. Mikhailov, Europhys. Lett. 79, 48001 (2007)

    Article  ADS  Google Scholar 

  22. Y.-K. Kwon, K.-H. Cho, Bioinformatics 24, 987 (2008)

    Article  Google Scholar 

  23. M.E.J. Newman, PNAS 98, 404 (2001)

    Article  MATH  ADS  Google Scholar 

  24. M.E.J. Newman, PNAS 101, 5200 (2004)

    Article  ADS  Google Scholar 

  25. M. Rosvall, C.T. Bergstrom, PNAS 105, 1118 (2008)

    Article  ADS  Google Scholar 

  26. L.C. Freeman, Social Netw. 1, 215 (1978)

    Article  Google Scholar 

  27. A.F.J. Vanraan, Nature 347, 626 (1990)

    Article  ADS  Google Scholar 

  28. P.O. Larsen, M. von Ins, Lotka’s law (co-authorship and interdisciplinary publishing, WIS, 2008)

  29. S. Wuchty, B.F. Jones, B. Uzzi, Science 316, 1036 (2007)

    Article  ADS  Google Scholar 

  30. J. Bollen, H.V. de Sompel, A. Hagberg, L. Bettencourt, R. Chute, M.A. Rodriguez, L. Balakireva, PLoS ONE 4, 4803 (2009)

    Article  ADS  Google Scholar 

  31. A.L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, T. Vicsek, Physica A 311, 590 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. K. Börner, J.T. Maru, R.L. Goldstone, PNAS 101, 5266 (2004)

    Article  Google Scholar 

  33. J.J. Ramasco, S.N. Dorogovtsev, R. Pastor-Satorras, Phys. Rev. E 67, 036106 (2004)

    Article  ADS  Google Scholar 

  34. M.E. Newman, Complex Networks, Lecture Notes in Physics (Springer Berlin, Heidelberg, 2004), Vol. 650, pp. 337 − 370

  35. S. Redner, Eur. Phys. J. B 4, 131 (1998)

    Article  ADS  Google Scholar 

  36. M.E.J. Newman, Phys. Rev. E 64, 025102 (2001)

    Article  ADS  Google Scholar 

  37. A. Inzelt, A. Schubert, M. Schubert, Scientometrics 78, 37 (2009)

    Article  Google Scholar 

  38. T. Velden, C. Lagoze, 12th International Conference on Scientometrics and Informetrics (ISSI, 2009)

  39. M. Girvan, M.E.J. Newman, PNAS 99, 7821 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. M.E.J. Newman, PNAS 103, 8577 (2006)

    Article  ADS  Google Scholar 

  41. R. Guimerá, B. Uzzi, J. Spiro, L.A.N. Amaral, Science 308, 697 (2005)

    Article  ADS  Google Scholar 

  42. M. Granovetter, Getting a job: A study of Contacts and Careers, 2 edn. (The University of Chicago Press, Chicago, 1995)

  43. M.S. Granovetter, Am. J. Sociol. 78, 1360 (1973)

    Article  Google Scholar 

  44. S. Goyal, F. Vega-Redondo, J. Econ. Theory 137, 460 (2007)

    Article  MATH  Google Scholar 

  45. R.S. Burt, Structural Holes: The Social Structure of Competition (MA: Harvard University Press, Cambridge, 1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Krumov.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krumov, L., Fretter, C., Müller-Hannemann, M. et al. Motifs in co-authorship networks and their relation to the impact of scientific publications. Eur. Phys. J. B 84, 535–540 (2011). https://doi.org/10.1140/epjb/e2011-10746-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10746-5

Keywords

Navigation