Skip to main content
Log in

Tunneling time correction to the intersubband optical absorption in a THz laser-dressed GaAs/Al x Ga1- x As quantum well

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

Tunneling effect on the intersubband optical absorption in a GaAs/Al x Ga1- x As quantum well under simultaneous presence of intense non-resonant laser and static electric fields is theoretically investigated. Based on the shooting method the quasi-stationary energy levels and their corresponding linewidths are obtained. By considering the joint action of the two external fields the linear absorption coefficient is calculated by means of Fermi’s golden rule and taking into account the intersubband relaxation. We found that: (i) the linewidth broadening due to the electron tunneling has an appreciable effect on the absorption spectrum; (ii) a constant relaxation time adopted in the previous studies could not be justified even for moderate electric fields, especially in the laser dressed wells. Our model predicts that the number of absorption peaks can be controlled by the external applied fields. While in the high-electric fields the excited states become unbounded due to a significant tunneling of the electrons, for high laser intensities and low/moderate electric fields the absorption spectrum has a richer structure due to the laser-generated resonant states. The possibility of tuning the resonant absorption energies by using the combined effects of the static electric field and the THz coherent radiation field can be useful in designing new optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Karabulut, U. Atav, H. Safac, M. Tomak, Eur. Phys. J. B 55, 283 (2007)

    Article  ADS  Google Scholar 

  2. M. Bedoya, A.S. Camacho, Phys. Rev. B 72, 155318 (2005)

    Article  ADS  Google Scholar 

  3. G.H. Wang, Q. Guo, K.X. Guo, Phys. Stat. Sol. (b) 238, 75 (2003)

    Article  ADS  Google Scholar 

  4. H. Yildirim, M. Tomak, Eur. Phys. J. B 50, 559 (2006)

    Article  ADS  Google Scholar 

  5. L.C. West, S.J. Eglash, Appl. Phys. Lett. 46, 1156 (1985)

    Article  ADS  Google Scholar 

  6. A.G.U. Perera, S.G. Matsik, H.C. Liu, M. Gao, M. Buchanan, W.J. Schaff, W. Yeo, Appl. Phys. Lett. 77, 741 (2000)

    Article  ADS  Google Scholar 

  7. D. Ahn, S.L. Chuang, Phys. Rev. B 35, 4149 (1987)

    Article  ADS  Google Scholar 

  8. R.P.G. Karunasiri, Y.J. Mii, K.L. Wang, IEEE Electron. Device Lett. 11, 227 (1990)

    Article  ADS  Google Scholar 

  9. R.F. Kazarinov, R.A. Suris, Sov. Phys. Semicond. 5, 707 (1971)

    Google Scholar 

  10. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994)

    Article  ADS  Google Scholar 

  11. S.L. Chuang, D. Ahn, J. Appl. Phys. 65, 2822 (1989)

    Article  ADS  Google Scholar 

  12. D. Ahn, S.L. Chuang, IEEE J. Quantum Electron. 23, 2196 (1987)

    Article  ADS  Google Scholar 

  13. F.T. Vasko, A.V. Korovin, E.P. O’Reilly, Phys. Rev. B 68, 045320 (2003)

    Article  ADS  Google Scholar 

  14. M. Bedoya, A.S. Camacho, Phys. Rev. B 72, 155318 (2005)

    Article  ADS  Google Scholar 

  15. S. Sasa, Y. Nakajima, M. Nakai, M. Inoue, D.C. Larrabee, J. Kono, Appl. Phys. Lett. 85, 5553 (2004)

    Article  ADS  Google Scholar 

  16. E. Kasapoglu, I. Sökmen, Phys. B: Condens. Matter. 403, 3746 (2008)

    Article  ADS  Google Scholar 

  17. B. Chen, K.-X. Guo, R.-Z. Wang, Z.-H. Zhang, Z.-L. Liu, Solid State Commun. 149, 310 (2009)

    Article  ADS  Google Scholar 

  18. F. Ungan, U. Yesilgul, S. Şakiroǧlu, E. Kasapoglu, H. Sari, I. Sökmen, Phys. Lett. A 374, 2980 (2010)

    Article  ADS  Google Scholar 

  19. E.C. Niculescu, L. Burileanu, Eur. Phys. J. B 74, 117 (2010)

    Article  ADS  Google Scholar 

  20. R. Khordad, S.K. Khaneghah, Phys. Stat. Sol. (b) 248, 243 (2011)

    Article  ADS  Google Scholar 

  21. E. Ozturk, Eur. Phys. J. B 75, 197 (2010)

    Article  ADS  Google Scholar 

  22. I. Karabulut, Appl. Surf. Sci. 256, 7570 (2010)

    Article  ADS  Google Scholar 

  23. W. Xie, Opt. Commun. 283, 3703 (2010) 0.5pt

    Article  ADS  Google Scholar 

  24. C.A. Duque, E. Kasapoglu, S. Sakiroglu, H. Sari, I. Sokmen, Appl. Surf. Sci. 257, 2313 (2011)

    Article  ADS  Google Scholar 

  25. S. Panda, B.K. Panda, S. Fung, C.D. Beling, Phys. Stat. Sol. (b) 194, 547 (1996)

    Article  ADS  Google Scholar 

  26. W. Chen, T.G. Andersson, Appl. Phys. Lett. 60, 1591 (1992)

    Article  ADS  Google Scholar 

  27. F.M.S. Lima, M.A. Amato, O.A.C. Nunes, A.L.A. Fonseca, B.G. Enders, E.F. Da Silva Jr., J. Appl. Phys. 105, 123111 (2009)

    Article  ADS  Google Scholar 

  28. A. Radu, Superlatt. Microstruct. 48, 114 (2010)

    Article  ADS  Google Scholar 

  29. W.L. Bloss, J. Appl. Phys. 65, 4789 (1989)

    Article  ADS  Google Scholar 

  30. H. Kramers, Collected Scientific Papers (North-Holland, Amsterdam, 1956)

  31. F. Qu, P.C. Morais, Phys. Lett. A 310, 460 (2003)

    Article  ADS  Google Scholar 

  32. M. Gavrila, J.Z. Kaminski, Phys. Rev. Lett. 52, 613 (1984)

    Article  ADS  Google Scholar 

  33. M. Marinescu, M. Gavrila, Phys. Rev. A 53, 2513 (1995)

    Article  ADS  Google Scholar 

  34. G. Bastard, E.E. Mendez, L.L. Chang, L. Esaki, Phys. Rev. B 28, 3241 (1983)

    Article  ADS  Google Scholar 

  35. G. Forsythe, M. Malcolm, C. Moler, Computer Methods for Mathematical Computations (Prentice-Hall, New Jersey, 1977)

  36. L.F. Shampine, Numerical Solution of Ordinary Differential Equations (Chapman & Hall, New York, 1994)

  37. M.R.K. Vahdani, G. Rezaei, Phys. Lett. A 373, 3079 (2009)

    Article  ADS  Google Scholar 

  38. J.A. Barker, E.P. O’Reilly, Phys. Rev. B 61, 13840 (2000)

    Article  ADS  Google Scholar 

  39. E. Kasapoglu, I. Sokmen, Physica B 403, 3746 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Radu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niculescu, E., Radu, A. Tunneling time correction to the intersubband optical absorption in a THz laser-dressed GaAs/Al x Ga1- x As quantum well. Eur. Phys. J. B 80, 73–82 (2011). https://doi.org/10.1140/epjb/e2011-10707-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10707-0

Keywords

Navigation