Skip to main content
Log in

Structural, electronic and magnetic properties of hcp Fe, Co and Ni nanowires encapsulated in zigzag carbon nanotubes

  • Mesoscopic and Nanoscale Systems
  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The structural, electronic and magnetic properties of hcp transition metal (TM = Fe, Co or Ni) nanowires TM4 encapsulated inside zigzag nanotubes C(m, 0) (m = 7, 8, 9, 10, 11 or 12), along with TM n (n = 4, 10 or 13) encapsulated inside C(12, 0), have been systematically investigated using the first-principle calculations. The results show that the TM nanowires can be inserted inside a variety of zigzag carbon nanotubes (CNTs) exothermically, except from the systems TM4@(7, 0) and TM13@(12, 0) which are endothermic. The charge is transferred from TM nanowires to CNTs, and the transferred charge increases with decreasing CNT diameter or increasing nanowire thickness. The magnetic moments of hybrid systems are smaller than those of the freestanding TM nanowires, especially for the atoms on the outermost shell of the nanowires. The magnetic moment per TM atom of TM/CNT system increases with increasing CNT diameter or decreasing nanowire thickness. Both the density of states and spin charge density analysis show that the spin polarization and the magnetic moments of all hybrid systems mainly originate from the TM nanowires, implying these systems can be applied in magnetic data storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Warner, M.H. Rümmeli, A. Bachmatiuk, B. Büchner, Phys. Rev. B 81, 155419 (2010)

    Article  ADS  Google Scholar 

  2. J. Zhang, J.O. Müller, W. Zheng, D. Wang, D. Su, R. Schlögl, Nano Lett. 8, 2738 (2008)

    Article  ADS  Google Scholar 

  3. A.A. Konchits, F.V. Motsnyi, Yu.N. Petrov, S.P. Kolesnik, V.S. Yefanov, M.L. Terranova, E. Tamburri, S. Orlanducci, V. Sessa, M. Rossi, J. Appl. Phys. 100, 124315 (2006)

    Article  ADS  Google Scholar 

  4. S. Karmakar, S.M. Sharma, P.V. Teredesai, A.K. Sood, Phys. Rev. B 69, 165414 (2004)

    Article  ADS  Google Scholar 

  5. B.C. Satishkumar, A. Govindaraj, P.V. Vanitha, A.K. Raychaudhuri, C.N.R. Rao, Chem. Phys. Lett. 362, 301 (2002)

    Article  ADS  Google Scholar 

  6. Y. Zhang, H. Dai, Appl. Phys. Lett. 77, 3015 (2000)

    Article  ADS  Google Scholar 

  7. C. Guerret-Piécourt, Y. Le Bouar, A. Loiseau, H. Pascard, Nature 372, 761 (1994)

    Article  ADS  Google Scholar 

  8. E.M. Diniz, R.W. Nunes, H. Chacham, M.S.C. Mazzoni, Phys. Rev. B 81, 153413 (2010)

    Article  ADS  Google Scholar 

  9. S. Ghosh, S. Nigam, G.P. Das, C. Majumdar, J. Chem. Phys. 132, 164704 (2010)

    Article  ADS  Google Scholar 

  10. J.M. Zhang, S.F. Wang, K.W. Xu, V. Ji, J. Nanosci. Nanotechnol. 10, 840 (2010)

    Article  Google Scholar 

  11. S. Azevedo, C. Chesman, J.R. Kaschny, Eur. Phys. J. B 74, 123 (2010)

    Article  ADS  Google Scholar 

  12. J.M. Zhang, L.Y. Chen, S.F. Wang, K.W. Xu, Eur. Phys. J. B 73, 555 (2010)

    Article  ADS  Google Scholar 

  13. X.J. Du, J.M. Zhang, S.F. Wang, K.W. Xu, V. Ji, Eur. Phys. J. B 72, 119 (2009)

    Article  ADS  Google Scholar 

  14. S. Yuan, F. Li, J. Appl. Phys. 106, 014307 (2009)

    Article  ADS  Google Scholar 

  15. V.V. Ivanovskaya, C. Köhler, G. Seifert, Phys. Rev. B 75, 075410 (2007)

    Article  ADS  Google Scholar 

  16. C.K. Yang, J. Zhao, J.P. Lu, Phys. Rev. B 74, 235445 (2006)

    Article  ADS  Google Scholar 

  17. M. Weissmann, G. García, M. Kiwi, R. Ramírez, C.C. Fu, Phys. Rev. B 73, 125435 (2006)

    Article  ADS  Google Scholar 

  18. G.W. Peng, A.C.H. Huan, Y.P. Feng, Appl. Phys. Lett. 88, 193117 (2006)

    Article  ADS  Google Scholar 

  19. Y.J. Kang, J. Choi, C.Y. Moon, K.J. Chang, Phys. Rev. B 71, 115441 (2005)

    Article  ADS  Google Scholar 

  20. Y. Yagi, T.M. Briere, M.H.F. Sluiter, V. Kumar, A.A. Farajian, Y. Kawazoe, Phys. Rev. B 69, 075414 (2004)

    Article  ADS  Google Scholar 

  21. C. Yang, J. Zhao, J.P. Lu, Phys. Rev. Lett. 90, 257203 (2003)

    Article  ADS  Google Scholar 

  22. S.B. Fagan, R. Mota, A.J.R. da Silva, A. Fazzio, Phys. Rev. B 67, 205414 (2003)

    Article  ADS  Google Scholar 

  23. K. Svensson, H. Olin, E. Olsson, Phys. Rev. Lett. 93, 145901 (2004)

    Article  ADS  Google Scholar 

  24. N.Y. Jin-Phillipp, M. Ruhle, Phys. Rev. B 70, 245421 (2004)

    Article  ADS  Google Scholar 

  25. Z.J. Liu, R.C. Che, Z.D. Xu, L.M. Peng, Synth. Met. 128, 191 (2002)

    Article  Google Scholar 

  26. A. Leonhardt, M. Ritschel, R. Kozhuharova, A. Graff, T. Mühl, R. Huhle, I. Mönch, D. Elefant, C.M. Schneider, Diamond Rel. Mater. 12, 790 (2003)

    Article  ADS  Google Scholar 

  27. R. Kozhuharova, M. Ritschel, D. Elefant, A. Graff, A. Leonhardt, I. Mönch, T. Mühl, C.M. Schneider, J. Mater. Sci. Mater. Electron. 14, 789 (2003)

    Article  Google Scholar 

  28. B. Hope, A. Horsfield, Phys. Rev. B 77, 094442 (2008)

    Article  ADS  Google Scholar 

  29. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  30. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  31. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  32. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  ADS  Google Scholar 

  33. P. Hohenberg, W. Kohn, Phys. Rev. 136, B 864 (1964)

    Google Scholar 

  34. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  35. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  36. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  37. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  38. R. Bader, in Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, 1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Zhang, J.M. & Huo, Y.P. Structural, electronic and magnetic properties of hcp Fe, Co and Ni nanowires encapsulated in zigzag carbon nanotubes. Eur. Phys. J. B 81, 459–465 (2011). https://doi.org/10.1140/epjb/e2011-10658-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10658-4

Keywords

Navigation