Skip to main content
Log in

Homogeneous bubble nucleation limit of mercury under the normal working conditions of the planned European spallation neutron source

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

In spallation neutron sources, liquid mercury, upon adsorbing the proton beam, is exhibited to large thermal and pressure shocks. These local changes in the state of mercury can cause the formation of unstable bubbles in the liquid, which can damage at their collapse the enclosing the liquid solid material. While there are methods to deal with the pressure shock, the local temperature shock cannot be avoided. In our paper we calculated the work of the critical cluster formation (for mercury micro-bubbles) together with the rate of their formation (nucleation rate). It is shown that the homogeneous nucleation rates are very low at the considered process conditions even after adsorbing several proton pulses, therefore, the probability of temperature induced homogeneous bubble nucleation is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Futukawa, H. Kogawa, H. Rino, H. Date, H. Takeshi, Int. J. Impact Eng. 28, 123 (2003)

    Article  Google Scholar 

  2. B.W. Riemer, J.R. Haines, J.D. Hunn, D.C. Lousteau, T.J. McManamy, C.C. Tsai, J. Nucl. Mat. 92, 318 (2003)

    Google Scholar 

  3. H. Date, M. Futakawa, Int. J. Impact Eng. 32, 118 (2005)

    Article  Google Scholar 

  4. N.J. Nicholas, P.V. Chitnis, R.G. Holt, R.A. Roy, R.O. Cleveland, B. Riemer, M. Wendel, J. Acoust. Soc. Am. 127, 2231 (2010)

    Article  ADS  Google Scholar 

  5. D.A. McClintock, P.D. Ferguson, L.K. Mansur, J. Nucl. Mat. 398, 73 (2010)

    Article  ADS  Google Scholar 

  6. J.R. Haines, B.W. Riemer, D.K. Felde, J.D. Hunn, S.J. Pawel, C.C. Tsai, J. Nucl. Mat. 343, 58 (2005)

    Article  ADS  Google Scholar 

  7. S.J. Pawel, L.K. Mansur, J. Nucl. Mat. 398, 180 (2010)

    Article  ADS  Google Scholar 

  8. T. Naoe, I. Masato, M. Futukawa, Nucl. Inst. Meth. Phys. Res. A 586, 382 (2008)

    Article  ADS  Google Scholar 

  9. T. Naoe, M. Futukawa, T. Shoubu, T. Wakui, H. Kogawa, H. Takeuchi, M. Kawai, J. Nucl. Sci. Technol. 45, 698 (2008)

    Article  Google Scholar 

  10. R.P. Taleyarkhan, F. Moraga, Nucl. Eng. Des. 207, 181 (2001)

    Article  Google Scholar 

  11. M. Futukawa, H.T. Kogawa, S. Hasegawa, T. Naoe, I. Masato, K. Haga, T. Wakui, N. Tanaka, Y. Mashumoto, Y. Ikeda, J. Nucl. Sci. Technol. 45, 1041 (2008)

    Article  Google Scholar 

  12. K. Okita, S. Takagi, Y.T. Matsumoto, JFST 3, 116 (2008)

    Article  ADS  Google Scholar 

  13. O. Redlich, J.N.S. Kwong, Chem. Rev. 44, 233 (1949)

    Article  Google Scholar 

  14. K. Morita, W. Maschek, M. Flad, Y. Tobita, H. Yamano, J. Nucl. Sci. Techol. 43, 526 (2006)

    Article  Google Scholar 

  15. K. Morita, V. Sobolev, M. Flad, J. Nucl. Mat. 362, 227 (2007)

    Article  ADS  Google Scholar 

  16. K. Morita, E.A. Fischer, Nucl. Eng. Des. 183, 177 (1998)

    Article  Google Scholar 

  17. N.B. Vargaftik, Y.K. Vinogradov, V.S. Yargin, Handbook of Physical Properties of Liquid and Gases, 3rd edn. (Begell House, New York, 1996)

  18. W. Goetzlaff, doctoral thesis, Philips-Universität Marburg, Germany, 1988

  19. J.W.P. Schmelzer, J. Schmelzer Jr., J. Chem. Phys. 114, 5180 (2001)

    Article  ADS  Google Scholar 

  20. J.D. van der Waals, Ph. Kohnstamm, Lehrbuch der Thermodynamik (Johann-Ambrosius-Barth Verlag, Leipzig und Amsterdam, 1908)

  21. K. Binder, Spinodal Decomposition, in Materials Science and Technology, edited by R.W. Cahn, P. Haasen, E.J. Kramer (VCH, Weinheim, 1991), Vol. 5, p. 405

  22. D.B. Macleod, Trans. Faraday Soc. 19, 38 (1923)

    Article  Google Scholar 

  23. J.J. Jasper, Phys. Chem. Ref. Data 1, 841 (1972)

    Article  ADS  Google Scholar 

  24. I.F. Barna, A.R. Imre, L. Rosta, F. Mezei, Eur. Phys. J. B 66, 419 (2008)

    Article  ADS  Google Scholar 

  25. I. Tiselj, S. Petelin, Trans. ASME J. Fluids Eng. 120, 363 (1998)

    Article  Google Scholar 

  26. I.F. Barna, A.R. Imre, G. Baranyai, Gy. Ezsöl, Nucl. Eng. Des. 240, 146 (2010)

    Article  Google Scholar 

  27. Liquids Under Negative Pressure, edited by A.R. Imre, H.J. Maris, P.R. Williams, NATO Science Series (Kluwer, 2002)

  28. M. Ida, T. Naoe, M. Futukawa, Phys. Rev. E 75, 046304 (2007)

    Article  ADS  Google Scholar 

  29. B.W. Riemer, J. Nucl. Mat. 343, 81 (2005)

    Article  ADS  Google Scholar 

  30. S. Ishikura, H. Kogawa, M. Futakawa, K. Kikuchi, R. Hino, C. Arakawa, J. Nucl. Mat. 318, 113 (2003)

    Article  ADS  Google Scholar 

  31. V.P. Skripov, Metastable Liquids (Nauka, Moscow, 1972; Wiley, New York, 1974)

  32. J.W.P. Schmelzer, J. Schmelzer Jr., Atm. Res. 65, 303 (2003)

    Article  Google Scholar 

  33. A.S. Abyzov, J.W.P. Schmelzer, J. Chem. Phys. 127, 114504 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. F. Barna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imre, A., Abyzov, A., Barna, I. et al. Homogeneous bubble nucleation limit of mercury under the normal working conditions of the planned European spallation neutron source. Eur. Phys. J. B 79, 107–113 (2011). https://doi.org/10.1140/epjb/e2010-10700-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-10700-1

Keywords

Navigation