Skip to main content
Log in

Prediction of extreme events in the OFC model on a small world network

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

We investigate the predictability of extreme events in a dissipative Olami-Feder-Christensen model on a small world topology. Due to the mechanism of self-organized criticality, it is impossible to predict the magnitude of the next event knowing previous ones, if the system has an infinite size. However, by exploiting the finite size effects, we show that probabilistic predictions of the occurrence of extreme events in the next time step are possible in a finite system. In particular, the finiteness of the system unavoidably leads to repulsive temporal correlations of extreme events. The predictability of those is higher for larger magnitudes and for larger complex network sizes. Finally, we show that our prediction analysis is also robust by remarkably reducing the accessible number of events used to construct the optimal predictor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Jensen, Self-Organized Criticality (Cambridge Univ. Press, New York, 1998)

  2. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, 1987)

  3. P. Bak, How Nature Works: The Science of Self-Organized Criticality (Copernicus, New York, 1996)

  4. P. Bak et al., Phys. Rev. Lett. 59, 381 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  5. P. Bak et al., Phys. Rev. A 38, 364 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. X. Yang et al., Phys. Rev. Lett. 92, 228501 (2004)

    Article  ADS  Google Scholar 

  7. M.S. Mega et al., Phys. Rev. Lett. 92, 129802 (2003)

    Article  ADS  Google Scholar 

  8. A. Helmstetter et al., Phys. Rev. E 70, 046120 (2004)

    Article  ADS  Google Scholar 

  9. A. Corral, Phys. Rev. Lett. 95, 159801 (2005)

    Article  ADS  Google Scholar 

  10. Z. Olami et al., Phys. Rev. Lett. 68, 1244 (1992)

    Article  ADS  Google Scholar 

  11. S. Lise, M. Paczuski, Phys. Rev. Lett. 88, 228301 (2002)

    Article  ADS  Google Scholar 

  12. The Science of Disasters, Climate Disruptions, Heart Attacks, and Market Crashes, edited by A. Bunde, J. Kropp, H.J. Schellnhuber (Springer, Berlin, 2002)

  13. Extreme Events in Nature and Society, edited by S.A. Albeverio, V. Jentsch, H. Kantz (Springer, Berlin, 2006)

  14. Nature debates, Is the reliable prediction of individual earthquakes a realistic scientific goal? (1999), at http://www.nature.com/nature/debates/earthquake/ equake-contents.html

  15. A. Garber et al., Phys. Rev. E 80, 026124 (2009)

    Article  ADS  Google Scholar 

  16. A. Garber, H. Kantz, Eur. Phys. J. B 67, 437 (2009)

    Article  ADS  Google Scholar 

  17. F. Caruso et al., Phys. Rev. E 75, R055101 (2007)

    Article  ADS  Google Scholar 

  18. F. Caruso et al., Eur. Phys. J. B 50, 243 (2006)

    Article  ADS  Google Scholar 

  19. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  20. T. Parsons, J. Geophys. Res. 107, 2199 (2002)

    Article  ADS  Google Scholar 

  21. Y.Y. Kagan, D.D. Jackson, Geophys. J. Int. 104, 117 (1991)

    Article  ADS  Google Scholar 

  22. D.L. Turcotte, Fractals and Chaos in Geology and Geophysics (Cambridge Univ. Press, 1997)

  23. M.S. Mega et al., Phys. Rev. Lett. 90, 188501 (2003)

    Article  ADS  Google Scholar 

  24. S. Abe, N. Suzuki, Europhys. Lett. 65, 581 (2004)

    Article  ADS  Google Scholar 

  25. D. Marsan, C.J. Bean, Geophys. J. Int. 154, 179 (2003)

    Article  ADS  Google Scholar 

  26. E. Casarotti et al., Earth Planet. Sci. Lett. 191, 75 (2001)

    Article  ADS  Google Scholar 

  27. L. Crescentini et al., Science 286, 2132 (1999)

    Article  Google Scholar 

  28. A. Corral, Phys. Rev. Lett. 92, 108501 (2004)

    Article  ADS  Google Scholar 

  29. P. Tosi et al., Annals of Geophysics 47, 1849 (2004)

    Google Scholar 

  30. P.A. Varotsos et al., Phys. Rev. E 72, 041103 (2005)

    Article  ADS  Google Scholar 

  31. S. Hallerberg, J. Bröcker, H. Kantz, Nonlinear Time Series Analysis in the Geosciences, Lecture Notes in Earth Sciences (Springer, 2008)

  32. J. Neyman, E.S. Pearson, Phil. Trans. R. Soc. Lond. 231, 289 (1933)

    Article  MATH  ADS  Google Scholar 

  33. J.P. Egan, Signal detection theory and ROC analysis (Academic Press, New York, 1975)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Caruso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caruso, F., Kantz, H. Prediction of extreme events in the OFC model on a small world network. Eur. Phys. J. B 79, 7–11 (2011). https://doi.org/10.1140/epjb/e2010-10635-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-10635-5

Keywords

Navigation