Skip to main content
Log in

Electronic properties of a quantum dot formed by the potentials associated with the surface acoustic wave and constrictions

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The electronic structure of dynamic quantum dots formed by surface acoustic waves potential and the confinement potential produced by gate voltage has been investigated within the spin-density-functional theory. We found the addition energy of this kind quantum dot in general decreases as the electron number increases, so the basic feature of the quantized acoustoelectric current with multi-plateaus can be reproduced. The addition energy needed for a second electron entering into the dynamic quantum dot is found to be about 2.21 meV, which is in good agreement with experimental estimations. Moreover, the formation of the Wigner molecule-like states is observed when the number of electrons in the dot exceeds three. By the calculated addition energy and the evolution of the electron density in the presence of a magnetic field, we also explained the influence of the magnetic field on the acoustoelectric current appeared in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.M. Shilton, V.I. Talyanskii, M. Pepper, D.A. Ritchie, J.E.F. Frost, C.J.B. Ford, C.G. Smith, G.A.C. Jones, J. Phys.: Condens. Matter 8, L531 (1996)

    Article  ADS  Google Scholar 

  2. V.I. Talyanskii, J.M. Shilton, M. Pepper, C.G. Smith, C.J.B. Ford, E.H. Linfield, D.A. Ritchie, G.A.C. Jones, Phys. Rev. B 56, 15180 (1997)

    Article  ADS  Google Scholar 

  3. J. Cunningham, V.I. Talyanskii, J.M. Shilton, M. Pepper, A. Kristensen, P.E. Lindelof, Phys. Rev. B 62, 1564 (2000)

    Article  ADS  Google Scholar 

  4. J.T. Janssen, A. Hartland, IEEE Trans. Instrum. Meas. 50, 227 (2001)

    Article  Google Scholar 

  5. J. Cunningham, V.I. Talyanskii, J.M. Shilton, M. Pepper, M.Y. Simmons, D.A. Ritchie, Phys. Rev. B 60, 4850 (1999)

    Article  ADS  Google Scholar 

  6. J.H. He, H.Z. Guo, L. Song, W. Zhang, J. Gao, C. Lu, Physica B 405, 404 (2010)

    Article  ADS  Google Scholar 

  7. S.J. Wright, M.D. Blumenthal, G. Gumbs, A.L. Thorn, M. Pepper, T.J.B.M. Janssen, S.N. Holmes, D. Anderson, G.A.C. Jones, C.A. Nicoll, D.A. Ritchie, Phys. Rev. B 78, 233311 (2008)

    Article  ADS  Google Scholar 

  8. B. Kaestner, C. Leicht, V. Kashcheyevs, K. Pierz, U. Siegner, H.W. Schumacher, Appl. Phys. Lett. 94, 012106 (2009)

    Article  ADS  Google Scholar 

  9. G.R. Aǐzin, G. Gumbs, M. Pepper, Phys. Rev. B 58, 10589 (1998)

    Article  Google Scholar 

  10. G. Gumbs, G.R. Aǐzin, M. Pepper, Phys. Rev. B 60, R13954 (1999)

    Article  ADS  Google Scholar 

  11. P.A. Maksym, Phys. Rev. B 61, 4727 (2000)

    Article  ADS  Google Scholar 

  12. K. Flensberg, Q. Niu, M. Pustilnik, Phys. Rev. B 60, R16291 (1999)

    Article  ADS  Google Scholar 

  13. A.M. Robinson, C.H.W. Barnes, Phys. Rev. B 63, 165418 (2001)

    Article  ADS  Google Scholar 

  14. G. Giavaras, Phys. Rev. B 81, 073302, (2010)

  15. N.E. Fletcher, J. Ebbecke, T.J.B.M. Janssen, F.J. Ahlers, M. Pepper, H.E. Beere, D.A. Ritchie, Phys. Rev. B 68, 245310 (2003)

    Article  ADS  Google Scholar 

  16. W. Kohn, L. Sham, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  17. H. Saarikoski, E. Räsänen, S. Siljamäki, A. Harju, M.J. Puska, R.M. Nieminen, Eur. Phys. J. B 26, 241 (2002)

    ADS  Google Scholar 

  18. E. Räsänen, H. Saarikoski, V.N. Stavrou, A. Harju, M.J. Puska, R.M. Nieminenl, Phys. Rev. B 67, 235307 (2003)

    Article  ADS  Google Scholar 

  19. C. Attaccalite, S. Moroni, P. Gori-Giorgi, G.B. Bachelet, Phys. Rev. Lett. 88, 256601 (2002)

    Article  ADS  Google Scholar 

  20. M. Heiskanen, T. Torsti, M.J. Puska, R.M. Nieminen, Phys. Rev. B 63, 245106 (2001)

    Article  ADS  Google Scholar 

  21. H.Z. Guo, J. Gao, C. Lu, J. Appl. Phys. 105, 124302 (2009)

    Article  ADS  Google Scholar 

  22. S.W. Chen, H.Z. Guo, W. Zhang, L. Song, C. Lu, J. Gao, Solid State Commun. 149, 1909 (2009)

    Article  ADS  Google Scholar 

  23. M.R. Astley, M. Kataoka, C.J.B. Ford, C.H.W. Barnes, D. Anderson, G.A.C. Jones, I. Farrer, D.A. Ritchie, M. Pepper, Physica E 40, 1136 (2007)

    Article  ADS  Google Scholar 

  24. M.R. Astley, M. Kataoka, C.J.B. Ford, C.H.W. Barnes, D. Anderson, G.A.C. Jones, I. Farrer, D.A. Ritchie, M. Pepper, Phys. Rev. Lett. 99, 156802 (2007)

    Article  ADS  Google Scholar 

  25. P. Utko, H.J. Bindslev, P.E. Lindelof, C.B. S\({\o}\)rensen, K. Gloos, J. Low Temp. Phys. 146, 607 (2007)

    Article  ADS  Google Scholar 

  26. M.D. Blumental, B. Kaestner, L. Li, S. Giblin, T.J.B.M. Janssen, M. Pepper, D. Anderson, G. Jones, D.A. Ritchie, Nat. Phys. 3 343 (2007)

  27. L. Song, H. Yuan, C.Y. Zhang, L. Li, C. Lu, J. Gao, J. Appl. Phys. 106, 104508 (2009)

    Article  ADS  Google Scholar 

  28. W. Häusler, B. Kramer, J. Masek, Z. Phys. B: Condens. Matter 85, 435 (1999)

    Article  Google Scholar 

  29. K. Jauregui, W. Haüsler, B. Kramer, Europhys. Lett. 24, 581 (1993)

    Article  ADS  Google Scholar 

  30. S. Akbar, In-Ho Lee, Phys. Rev. B 63, 165301 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Gao, J., Guo, HZ. et al. Electronic properties of a quantum dot formed by the potentials associated with the surface acoustic wave and constrictions. Eur. Phys. J. B 79, 351–356 (2011). https://doi.org/10.1140/epjb/e2010-10603-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-10603-1

Keywords

Navigation