Skip to main content
Log in

Structure and stability of annular sheared channel flows: effects of confinement, curvature and inertial forces – waves

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

The structure and stability of the flows in an annular channel sheared by a rotating lid are investigated experimentally, theoretically and numerically. The channel has a square section, and a small curvature parameter: the ratio Γ of the inter-radii to the mean radius is 9.5%. The sidewalls and the bottom of the channel are integral and can rotate independently of the lid, permitting pure shear, co-rotation and counter-rotation cases. The basic flows obtained at small shear are characterized. In the absence of co-rotation, the centrifugal force linked with the curvature of the system plays an important role, whereas, when co-rotation is fast, the Coriolis force dominates. These basic flows undergo some instabilities when the shear is increased. These instabilities lead to supercritical traveling waves in the pure shear and co-rotation cases, but to weak turbulence in the counter-rotation case. The Reynolds number for the onset of instabilities, constructed with the velocity difference between the lid and bottom at mid-radius, and the height of the channel, increases from 1000 in the counter-rotation case to 1260 in the pure shear case and higher and higher values when co-rotation increases, i.e., when the Coriolis effect increases. The relevance of uni-dimensional Ginzburg-Landau models to describe the dynamics of the waves is studied. The domain of validity of these models turns out to be quite narrow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Barthelet, F. Charru, J. Fabre, J. Fluid Mech. 303, 23 (1995)

    Article  ADS  Google Scholar 

  2. F. Charru, H. Mouilleron, O. Eiff, J. Fluid Mech. 519, 55 (2004)

    Article  MATH  ADS  Google Scholar 

  3. F. Charru, E. Larrieu, J.B. Dupont, R. Zenit, J. Fluid Mech. 570, 431 (2007)

    Article  MATH  ADS  Google Scholar 

  4. A.H. Hirsa, J.M. Lopez, R. Miraghaie, J. Fluid Mech. 470, 135 (2002)

    Article  MATH  ADS  Google Scholar 

  5. A. Betat, V. Frette, I. Rehberg, Phys. Rev. Lett. 83, 88 (1999)

    Article  ADS  Google Scholar 

  6. M.K. Fukuda, W. Lick, J. Geophys. Res. 85, 2813 (1980)

    Article  ADS  Google Scholar 

  7. C.L. Amos, J. Grant, G.R. Daborn, K. Black, Estuar. Coast. Shelf Sci. 34, 557 (1992)

    Article  ADS  Google Scholar 

  8. N. Hoffmann, F.H. Busse, W.L. Chen, J. Fluid Mech. 366, 311 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  9. E. Plaut, Phys. Rev. E 67, 046303 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Poncet, E. Serre, P.L. Gal, Phys. Fluids 21, 064106 (2009)

    Article  ADS  Google Scholar 

  11. I. Raspo, S. Hugues, E. Serre, A. Randriamampianina, P. Bontoux, Comput. Fluids 31, 745 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. E. Serre, P. Bontoux, B.E. Launder, Flow Turbul. Combust. 69, 35 (2002)

    Article  MATH  Google Scholar 

  13. V. Theofilis, P.W. Duck, J. Owen, J. Fluid Mech. 505, 249 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. G.N. Lance, M.H. Rogers, Proc. R. Soc. Lond. A 266, 109 (1962)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. L. Schouveiler, P.L. Gal, M.P. Chauve, J. Fluid Mech. 443, 329 (2001)

    Article  MATH  ADS  Google Scholar 

  16. G. Gauthier, P. Gondret, F. Moisy, M. Rabaud, J. Fluid Mech. 473, 1 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. J.D. Scheel, M.R. Paul, M.C. Cross, P.F. Fischer, Phys. Rev. E 68, 066216 (2003)

    Article  ADS  Google Scholar 

  18. A. Faller, J. Fluid Mech. 230, 245 (1991)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Plaut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaut, E., Lebranchu, Y., Jenny, M. et al. Structure and stability of annular sheared channel flows: effects of confinement, curvature and inertial forces – waves. Eur. Phys. J. B 79, 35–46 (2011). https://doi.org/10.1140/epjb/e2010-10572-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-10572-3

Keywords

Navigation