Skip to main content
Log in

Continuous Markovian model for Lévy random walks with superdiffusive and superballistic regimes

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We consider a previously devised model describing Lévy random walks [I. Lubashevsky, R. Friedrich, A. Heuer, Phys. Rev. E 79, 011110 (2009); I. Lubashevsky, R. Friedrich, A. Heuer, Phys. Rev. E 80, 031148 (2009)]. It is demonstrated numerically that the given model describes Lévy random walks with superdiffusive, ballistic, as well as superballistic dynamics. Previously only the superdiffusive regime has been analyzed. In this model the walker velocity is governed by a nonlinear Langevin equation. Analyzing the crossover from small to large time scales we find the time scales on which the velocity correlations decay and the walker motion essentially exhibits Lévy statistics. Our analysis is based on the analysis of the geometric means of walker displacements and allows us to tackle probability density functions with power-law tails and, correspondingly, divergent moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982)

  2. J.-P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  3. B.J. West, W. Deering, Phys. Rep. 246, 1 (1994)

    Article  ADS  Google Scholar 

  4. Lévy Flights, and Related Topics in Physics, edited by M.F. Shlesinger, G.M. Zaslavsky, U. Frisch (Springer, Berlin, 1995)

  5. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. M. Dentz, H. Scher, D. Holder, B. Berkowitz, Phys. Rev. E 78, 041110 (2008)

    Article  ADS  Google Scholar 

  7. T. Koren, M.A. Lomholt, A.V. Chechkin, J. Klafter,1 R. Metzler, Phys. Rev. Let. 99, 160602 (2007)

    Article  ADS  Google Scholar 

  8. T. Koren, A.V. Chechkin, J. Klafter, Physica A 379, 10 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  9. M.A. Lomholt, T. Ambjörnsson, R. Metzler, Phys. Rev. Lett. 95, 260603 (2005)

    Article  ADS  Google Scholar 

  10. H. Katory, S. Schlipf, H. Walther, Phys. Rev. Lett. 79, 2221 (1997)

    Article  ADS  Google Scholar 

  11. H.C. Fogedby, Phys. Rev. E 50, 1657 (1994)

    Article  ADS  Google Scholar 

  12. A.A. Stanislavsky, Phys. Rev. E 67, 021111 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  13. P.D. Ditlevsen, Phys. Rev. E 60, 172 (1999)

    Article  ADS  Google Scholar 

  14. A. Dubkov, B. Spagnolo, Fluc. Noise Lett. 5, L267 (2005)

    Article  MathSciNet  Google Scholar 

  15. S. Marksteiner, K. Ellinger, P. Zoller, Phys. Rev. A 53, 3409 (1996)

    Article  ADS  Google Scholar 

  16. E. Lutz, Phys. Rev. Lett. 93, 190602 (2004)

    Article  ADS  Google Scholar 

  17. E. Barkai, R.J. Silbey, J. Phys. Chem. B 104, 3866 (2000)

    Article  Google Scholar 

  18. R. Metzler, I.M. Sokolov, Europhys. Lett. 58, 482 (2002)

    Article  ADS  Google Scholar 

  19. R. Friedrich, F. Jenko, A. Baule, S. Eule, Phys. Rev. Lett. 96, 230601 (2006)

    Article  ADS  Google Scholar 

  20. H. Affan, R. Friedrich, S. Eule, Phys. Rev. E 80, 011137 (2009)

    Article  ADS  Google Scholar 

  21. C. Tsallis, D.J. Bukman, Phys. Rev. E 54, R2197 (1996)

    Article  ADS  Google Scholar 

  22. A. Schenzle, H. Brand, Phys. Rev. A 20, 1628 (1979)

    Article  ADS  Google Scholar 

  23. W. Horsthemke, R. Lefever, Noise-Induced Transitions: Theory and Applications in Physics, Chemistry and Biology (Springer-Verlag, Berlin, 1984)

  24. H. Konno, P.S. Lomdahl, J. Phys. Soc. Jpn 73, 573 (2004)

    Article  MATH  ADS  Google Scholar 

  25. H. Konno, F. Watanabe, J. Math. Phys. 48, 103303 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  26. S.C. Venkataramani, T.M. Antonsen Jr., E. Ott, J.C. Sommerer, Physica D 96, 66 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. H. Takayasu, A.-H. Sato, M. Takayasu, Phys. Rev. Lett. 79, 966 (1997)

    Article  MATH  ADS  Google Scholar 

  28. J.M. Deutsch, Physica A 208, 433 (1994)

    Article  ADS  Google Scholar 

  29. H. Sakaguchi, J. Phys. Soc. Jpn 70, 3247 (2001)

    Article  MATH  ADS  Google Scholar 

  30. I. Lubashevsky, R. Friedrich, A. Heuer, Phys. Rev. E 79, 011110 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  31. I. Lubashevsky, R. Friedrich, A. Heuer, Phys. Rev. E 80, 031148 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  32. G.M. Zaslavsky, Phys. Rep. 371, 461 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. L.F. Richardson, Proc. R. Soc. London, Ser. A 110, 709 (1926)

    Google Scholar 

  34. M.F. Shlesinger, B.J. West, J. Klafter, Phys. Rev. Lett. 58, 1100 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  35. J.A. Viecelli, Phys. Fluids A 45, 8407 (1992)

    Google Scholar 

  36. G. Zimbardo, A. Greco, P. Veltri, Phys. Plasma 7, 1071 (2000)

    Article  ADS  Google Scholar 

  37. N.T. Ouellette, H. Xu, M. Bourgoin, E. Bodenschatz, New J. Phys. 8, 109 (2006)

    Article  ADS  Google Scholar 

  38. S. Pradham, Y.S. Mayya, B.N. Jagatap, Phys. Rev. E 76, 033407 (2007)

    ADS  Google Scholar 

  39. G.M. Viswanathan, E.P. Raposo, M.G.E. da Luz, Phys. Life Rev. 5, 133 (2008)

    Article  ADS  Google Scholar 

  40. M.J. Plank, A. James, J.R. Soc. Interface 5, 1077 (2008)

    Article  Google Scholar 

  41. C. Hawkes, J. Anim. Ecol. 78, 894 (2009)

    Article  Google Scholar 

  42. M.C. Santos, E.P. Raposo, G.M. Viswanathan, M.G.E. da Luz, Europhys. Lett. 67, 734 (2004)

    Article  ADS  Google Scholar 

  43. A. James, M.J. Plank, R. Brown, Phys. Rev. E 78, 051128 (2008)

    Article  ADS  Google Scholar 

  44. M.C. Mariani, Y. Liu, Physica A 377, 590 (2007)

    Article  ADS  Google Scholar 

  45. A. Figueiredo, I. Gleria, R. Matsushita, S. Da Silva, Physics A 323, 601 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. R. Matsushita, P. Rathie, S. Da Silva, Physica A 326, 544 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. M.C. Mariani, J.B. Libbin, V.K. Mani, M.P.B. Varela, C.A. Erickson, D.J. Valles-Rosales, Physica A 387, 1273 (2008)

    Article  ADS  Google Scholar 

  48. A. Rößler, Proc. Appl. Math. Mech. 5, 817 (2005)

    Article  Google Scholar 

  49. A. Rößler, SIAM J. Numer. Anal. 47, 1713 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  50. A. Papoulis, Probability, Random Variables, and Stochastic Process (McGraw-Hill, New York, 1991)

  51. G. Bel, I. Nemenman, New J. Phys. 11, 083009 (2009)

    Article  ADS  Google Scholar 

  52. W. Deng, E. Barkai, Phys. Rev. E 79, 011112 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  53. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)

  54. H. Konno, private communication

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Lubashevsky, A. Heuer or R. Friedrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubashevsky, I., Heuer, A., Friedrich, R. et al. Continuous Markovian model for Lévy random walks with superdiffusive and superballistic regimes. Eur. Phys. J. B 78, 207–216 (2010). https://doi.org/10.1140/epjb/e2010-10422-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-10422-4

Keywords

Navigation