Skip to main content
Log in

The Mie-Grüneisen equation of state for metal nanoparticles

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The Mie-Grüneisen equation is adapted for the description of the thermodynamic properties of nano-objects. It is shown that the Grüneisen parameter \(\Gamma \) depends on the ratio of the number of surface atoms to the number of interior atoms of the nano-objects. This ratio is determined by the characteristic size of nano-object and its form. It increases with decrease of the characteristic size. Reduction of the characteristic size of nano-objects that have a free surface, leads to a change in the Grüneisen parameter. If the nano-object is embedded in a matrix and has with it the coherent boundary, at the decrease of the nano-object size occurs either an increase or decrease of \(\Gamma \). Compression or stretching of nano-objects may bring about a change of the ratio between numbers of the interior and surface atoms caused by changing the form of nano-objects. The change of the Grüneisen parameter at the characteristic size decreasing of a nano-object is treated as the change of a degree of the anharmonicity of lattice thermal vibrations. It is established that an appreciable change of Γ occurs if the characteristic radius of a nano-object is less than 5 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. San-Miguel, Chem. Soc. Rev. 35, 876 (2006)

    Article  Google Scholar 

  2. L.A. Girifalco, Phys. Rev. B 52, 9910 (1995)

    Article  ADS  Google Scholar 

  3. C.Q. Sun, L.K. Pan, C.M. Li, S. Li, Phys. Rev. B 72, 134301 (2005)

    Article  ADS  Google Scholar 

  4. Q. Jiang, H.X. Shi, M. Zhao, J. Chem. Phys. 111, 2176 (1999)

    Article  ADS  Google Scholar 

  5. Q. Jiang, C.C. Yang, Curr. Nanosci. 4, 179 (2008)

    Article  ADS  Google Scholar 

  6. H. Küppers, in International Tables for Crystallography, edited by A. Authier (Kluwer Academic Publishers, Dordrecht, Boston, London, 2003), Vol. D

  7. G. Eckold, in International Tables for Crystallography, edited by A. Authier (Kluwer Academic Publishers, Dordrecht, Boston, London, 2003), Vol. D

  8. V.N. Zharkov, V.A. Kalinin, Equations of state for solids at high pressures and temperatures (Consultants Bureau, New York, 1971)

  9. Ya.B. Zel’dovich, Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamics Phenomena (Dover Publications, Mineola, NY, 2002)

  10. A.M. Molodets, High Pres. Res. 25, 267 (2005)

    Article  ADS  Google Scholar 

  11. M.J. Morley, D.J. Chapman, W.G. Proud, in CP1195, Shock Compression of Condensed Matter, edited by M.L. Elert, W.T. Buttler, M.D. Furnish, W.W. Anderson, W.G. Proud (American Institute of Physics, 2009)

  12. B.B. Karki, D. Bhattarai, L. Stixrude, Phys. Rev. B 73, 174208 (2006)

    Article  ADS  Google Scholar 

  13. F.G. Shi, J. Mater. Res. 9, 1307 (1994)

    Article  ADS  Google Scholar 

  14. K. Kang, S. Qin, C. Wang, Physica E 41, 817 (2009)

    Article  ADS  Google Scholar 

  15. R. Meyer, L.J. Lewis, S. Prakash, P. Entel, Phys. Rev. B 68, 104303 (2003)

    Article  ADS  Google Scholar 

  16. A.B. Papandrew, A.F. Yue, B. Fultz, I. Halevy, W. Sturhahn, T.S. Toellner, E.E. Alp, H.-K. Mao, Phys. Rev. B 69, 144301 (2004)

    Article  ADS  Google Scholar 

  17. S. Stankov, Y.Z. Yue, M. Miglierini, B. Sepiol, I. Sergueev, A.I. Chumakov, L. Hu, P. Svec, R. Rüffer, Phys. Rev. Lett. 100, 235503 (2008)

    Article  ADS  Google Scholar 

  18. F.D. Fischer, T. Waitz, D. Vollath, N.K. Simha, Progr. Mater. Sci. 53, 481 (2008)

    Article  Google Scholar 

  19. Q. Jiang, J.C. Li, B.Q. Chi, Chem. Phys. Lett. 366, 551 (2002)

    Article  ADS  Google Scholar 

  20. A.I. Rusanov, Suf. Sci. Rep. 58, 111 (2005)

    Article  Google Scholar 

  21. D. Kramer, J. Weissmüller, Surf. Sci. 601, 3042 (2007)

    Article  ADS  Google Scholar 

  22. Y. Zhao, J. Liu, L. Cao, Z. Wu, Z. Zhang, H. Dang, Mater. Chem. Phys. 99, 71 (2006)

    Article  Google Scholar 

  23. Q. Jiang, X.H. Zhou, Z. Wen, Appl. Surf. Sci. 195, 38 (2002)

    Article  Google Scholar 

  24. A.P. Chernyshev, Mater. Lett. 63, 1525 (2009)

    Article  Google Scholar 

  25. L.A. Girifalco, Statistical Physics of Materials (A Wiley-Interscience Publications John Wiley and Sons, New York, London, Sydney, Toronto, 1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Chernyshev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernyshev, A. The Mie-Grüneisen equation of state for metal nanoparticles. Eur. Phys. J. B 79, 321–325 (2011). https://doi.org/10.1140/epjb/e2010-10337-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-10337-0

Keywords

Navigation