Skip to main content
Log in

Relaxation equations for two-dimensional turbulent flows with a prior vorticity distribution

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

Using a Maximum Entropy Production Principle (MEPP), we derive a new type of relaxation equations for two-dimensional turbulent flows in the case where a prior vorticity distribution is prescribed instead of the Casimir constraints [R. Ellis, K. Haven, B. Turkington, Nonlinearity 15, 239 (2002)]. The particular case of a Gaussian prior is specifically treated in connection to minimum enstrophy states and Fofonoff flows. These relaxation equations are compared with other relaxation equations proposed by Robert and Sommeria [Phys. Rev. Lett. 69, 2776 (1992)] and Chavanis [Physica D 237, 1998 (2008)]. They can serve as numerical algorithms to compute maximum entropy states and minimum enstrophy states with appropriate constraints. We perform numerical simulations of these relaxation equations in order to illustrate geometry induced phase transitions in geophysical flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Tabeling, Phys. Rep. 362, 1 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. J. Sommeria, Two-Dimensional Turbulence, in: New trends in turbulence, edited by M. Lesieur, A. Yaglom, F. David, Les Houches Summer School 74, 385 (2001)

    MathSciNet  Google Scholar 

  3. P.H. Chavanis, Statistical mechanics of two-dimensional vortices and stellar systems, in: Dynamics and Thermodynamics of Systems with Long Range Interactions, edited by T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens, Lect. Notes Phys. 602 (Springer, 2002), arXiv:cond-mat/0212223

  4. H.J.H. Clercx, G.J.F. van Heijst, Appl. Mech. Rev. 62, 020802 (2009)

    Article  Google Scholar 

  5. P.S. Marcus, Annu. Rev. Astron. Astrophys. 31, 523 (1993)

    Article  ADS  Google Scholar 

  6. G.R. Flierl, Annu. Rev. Fluid Mech. 19, 493 (1987)

    Article  ADS  Google Scholar 

  7. B. Turkington, A. Majda, K. Haven, M. Dibattista, Proc. Natl. Acad. Sci. 98, 346 (2001)

    Article  MathSciNet  Google Scholar 

  8. F. Bouchet, J. Sommeria, JFM 464, 165 (2002)

    MATH  MathSciNet  ADS  Google Scholar 

  9. P.H. Chavanis, J. Sommeria, Phys. Rev. E 65, 026302 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  10. J. Miller, Phys. Rev. Lett. 65, 2137 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. R. Robert, J. Sommeria, JFM 229, 291 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. R. Ellis, K. Haven, B. Turkington, Nonlinearity 15, 239 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. R. Robert, J. Sommeria, Phys. Rev. Lett. 69, 2776 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. P.H. Chavanis, Phys. Rev. E 68, 036108 (2003)

    Article  ADS  Google Scholar 

  15. P.H. Chavanis, Physica D 200, 257 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. P.H. Chavanis, Physica D 237, 1998 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. T.D. Frank, Nonlinear Fokker-Planck Equations: Fundamentals and Applications (Springer-Verlag, 2005)

  18. P.H. Chavanis, Eur. Phys. J. B 62, 179 (2008)

    Article  MATH  ADS  Google Scholar 

  19. P.H. Chavanis, J. Sommeria, JFM 314, 267 (1996)

    Article  MATH  ADS  Google Scholar 

  20. A. Venaille, F. Bouchet, Phys. Rev. Lett. 102, 104501 (2009)

    Article  ADS  Google Scholar 

  21. A. Naso, P.H. Chavanis, B. Dubrulle, arXiv:1007.0164

  22. F. Bouchet, Physica D 237, 1978 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  23. P.H. Chavanis, Eur. Phys. J. B 70, 73 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. G. Kuz’min, Statistical mechanics of the organisation into two-dimensional coherent structures, in: Structural Turbulence, edited by M.A. Goldshtik (Acad. Naouk CCCP Novosibirsk, Institute of Thermophysics), pp. 103–114

  25. L. Onsager, Nuovo Cimento Suppl. 6, 279 (1949)

    Article  MathSciNet  Google Scholar 

  26. G. Joyce, D. Montgomery, J. Plasma Phys. 10, 107 (1973)

    Article  ADS  Google Scholar 

  27. T.S. Lundgren, Y.B. Pointin, J. Stat. Phys. 17, 323 (1977)

    Article  ADS  Google Scholar 

  28. R. Kraichnan, J. Fluid. Mech. 67, 155 (1975)

    Article  MATH  ADS  Google Scholar 

  29. R. Salmon, G. Holloway, M.C. Hendershott, J. Fluid. Mech. 75, 691 (1976)

    Article  MATH  ADS  Google Scholar 

  30. D. Lynden-Bell, MNRAS 136, 101 (1967)

    ADS  Google Scholar 

  31. P.H. Chavanis, J. Sommeria, R. Robert, ApJ 471, 385 (1996)

    Article  ADS  Google Scholar 

  32. A. Naso, P.H. Chavanis, B. Dubrulle, arXiv:0912.5098

  33. R. Robert, C. Rosier, J. Stat. Phys. 86, 481 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. A. Mikelic, R. Robert, SIAM J. Math. Anal. 29, 1238 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. C. Rosier, L. Rosier, Appl. Anal. 75, 441 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  36. C. Rosier, L. Rosier, Quart. Appl. Math. 61, 213 (2003)

    MATH  MathSciNet  ADS  Google Scholar 

  37. P.H. Chavanis, J. Sommeria, Phys. Rev. Lett. 78, 3302 (1997)

    Article  ADS  Google Scholar 

  38. P.H. Chavanis, J. Sommeria, JFM 356, 259 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. H. Brands, P.H. Chavanis, R. Pasmanter, J. Sommeria, Phys. Fluids 11, 3465 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. P.H. Chavanis, Phys. Rev. Lett. 84, 5512 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  41. E. Kazantsev, J. Sommeria, J. Verron, J. Phys. Oceanogr. 28, 1017 (1998)

    Article  ADS  Google Scholar 

  42. S. Dubinkina, J. Frank, J. Comput. Phys. 229, 2634 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. P.H. Chavanis, AIP Conf. Proc. 970, 39 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  44. R. Ellis, K. Haven, B. Turkington, J. Stat. Phys. 101, 999 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. F. Bouchet, J. Barré, J. Stat. Phys. 118, 1073 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. P.H. Chavanis, Int. J. Mod. Phys. B 22, 3113 (2006)

    Article  ADS  Google Scholar 

  47. J. Wang, G.K. Vallis, J. Mar. Res. 52, 83 (1994)

    Article  Google Scholar 

  48. N.P. Fofonoff, J. Mar. Res. 13, 254 (1954)

    MathSciNet  Google Scholar 

  49. B. Turkington, N. Whitaker, SIAM J. Sci. Comput. (USA) 17, 1414 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  50. J.P. Laval, B. Dubrulle, S. Nazarenko, Physica D 142, 231 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  51. B.F. Farrell, P.J. Ioannou, J. Atmos. Sci. 64, 3652 (2007)

    Article  ADS  Google Scholar 

  52. P.H. Chavanis, Ph.D. thesis, ENS Lyon, 1996

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. H. Chavanis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavanis, P., Naso, A. & Dubrulle, B. Relaxation equations for two-dimensional turbulent flows with a prior vorticity distribution. Eur. Phys. J. B 77, 167–186 (2010). https://doi.org/10.1140/epjb/e2010-00264-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00264-5

Keywords

Navigation