Skip to main content
Log in

Critical scaling in the theory of real fluids

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

An approach developed in the author’s recent paper [V.N. Bondarev, Phys. Rev. E 77, R050103 (2008)], where the independent calculation of three critical exponents for a fluid was demonstrated, is generalized to the case of the critical isotherm. This has allowed us to calculate, independently, three more critical exponents: δ = 4, μ = 5/12, and α = 1/8. These “non-classical” values are in good agreement with those determined experimentally and are rather close to the 3-dimensional Ising ones. In addition, on the basis of this approach a solution of the so-called Yang-Yang problem concerning the “pressure” and the “chemical potential” contributions to the critical singularity of the isochoric heat capacity of a fluid is proposed. Also, the so-called “corrections to scaling” terms are considered in the framework of the developed theory and the corresponding exponents at the critical isochore and the critical isotherm are calculated. The results obtained provide a natural perspective for including the non-classical (of the Ising-type) description of fluid critical properties into the conventional theory of liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Parola, L. Reatto, Adv. Phys. 44, 211 (1995)

    Article  ADS  Google Scholar 

  2. M. Barmatz, I. Hahn, J.A. Lipa, R.V. Duncan, Rev. Mod. Phys. 79, 1 (2007)

    Article  ADS  Google Scholar 

  3. Shang-Keng Ma, Modern Theory of Critical Phenomena (W.A. Benjamin, Inc., Reading, MA, 1976)

  4. M. Campostrini, A. Pelissetto, P. Rossi, E. Vicari, Phys. Rev. E 65, 066127 (2002)

    Article  ADS  Google Scholar 

  5. K.G. Wilson, M.E. Fisher, Phys. Rev. Lett. 28, 240 (1972)

    Article  ADS  Google Scholar 

  6. M.E. Fisher, Rev. Mod. Phys. 70, 653 (1998)

    Article  ADS  Google Scholar 

  7. A.Z. Patashinskii, V.L. Pokrovskii, Fluctuation Theory of Phase Transitions (Pergamon, Oxford, 1979), 2nd edn. (Nauka, Moscow, 1982) (in Russian)

  8. F. Zhong, M. Barmatz, I. Hahn, Phys. Rev. E 67, 021106 (2003)

    Article  ADS  Google Scholar 

  9. L.D. Landau, E.M. Lifshitz, Statistical Physics, part I (Nauka, Moscow, 1976) (in Russian)

  10. G.S. Rushbrooke, in Physics of Simple Liquids, edited by H.N.V. Temperley, J.S. Rowlinson, G.S. Rushbrooke (North-Holland Publishing Company, Amsterdam, 1968), Chap. 1

  11. V.N. Bondarev, Phys. Rev. E 77, R050103 (2008)

    Article  ADS  Google Scholar 

  12. C.N. Yang, C.P. Yang, Phys. Rev. Lett. 13, 303 (1964)

    Article  ADS  Google Scholar 

  13. N.N. Bogolyubov, The Problems of Dynamical Theory in Statistical Physics (Gostekhizdat, Moscow, 1946) (in Russian)

  14. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (John Wiley and Sons, New York, 1975)

  15. T. Morita, K. Hiroike, Progr. Theor. Phys. 25, 537 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  16. L. Verlet, Mol. Phys. 41, 183 (1980)

    Article  ADS  Google Scholar 

  17. L.P. Kadanoff, W. Götze, D. Hamblen, R. Hecht, E.A.S. Lewis, V.V. Palciauskas, M. Rayl, J. Swift, D. Aspnes, J. Kane, Rev. Mod. Phys. 39, 395 (1967)

    Article  ADS  Google Scholar 

  18. J.L. Lebowitz, J.K. Percus, Phys. Rev. 144, 251 (1966)

    Article  ADS  Google Scholar 

  19. R. Guida, J. Zinn-Justin, J. Phys. A 31, 8103 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. F.J. Wegner, Phys. Rev. B 5, 4529 (1972)

    Article  ADS  Google Scholar 

  21. A. Pelissetto, E. Vicari, Phys. Rep. 368, 549 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. N.J. Utt, S.Y. Lehman, D.T. Jacobs, J. Chem. Phys. 127, 104505 (2007)

    Article  ADS  Google Scholar 

  23. M.E. Fisher, G. Orkoulas, Phys. Rev. Lett. 85, 696 (2000)

    Article  ADS  Google Scholar 

  24. M.A. Anisimov, F. Zhong, M. Barmatz, J. Low Temp. Phys. 137, 69 (2004)

    Article  ADS  Google Scholar 

  25. M. Oettel, J. Phys.: Condens. Matter 17, 429 (2005)

    Article  ADS  Google Scholar 

  26. G. Stell, Phys. Rev. A 45, 7628 (1992)

    Article  ADS  Google Scholar 

  27. T. Heimburg, S.Z. Mirzaev, U. Kaatze, Phys. Rev. E 62, 4963 (2000)

    Article  ADS  Google Scholar 

  28. E. Luijten, M.E. Fisher, A.Z. Panagiotopoulos, Phys. Rev. Lett. 88, 185701 (2002)

    Article  ADS  Google Scholar 

  29. J.L. Barrat, J.P. Hansen, G. Pastore, Mol. Phys. 63, 747 (1988)

    Article  ADS  Google Scholar 

  30. G. Kahl, B. Bildstein, Y. Rosenfeld, Phys. Rev. E 54, 5391 (1996)

    Article  ADS  Google Scholar 

  31. G.A. Martynov, J. Chem. Phys. 129, 244509 (2008)

    Article  ADS  Google Scholar 

  32. G.A. Martynov, Phys. Rev. E 79, 031119 (2009)

    Article  ADS  Google Scholar 

  33. M.E. Fisher, J. Math. Phys. 5, 944 (1964)

    Article  ADS  Google Scholar 

  34. M.A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals (Nauka, Moscow, 1987) (in Russian)

  35. M.A. Anisimov, V.A. Rabinovich, V.V. Sychov, Thermodynamics of the Critical State of Individual Substances (Energoatomizdat, Moscow, 1990) (in Russian)

  36. B.M. Mognetti, P. Virnau, L. Yelash, W. Paul, K. Binder, M. Müller, L.G. MacDowell, J. Chem. Phys. 130, 044101 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Bondarev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondarev, V. Critical scaling in the theory of real fluids. Eur. Phys. J. B 77, 153–165 (2010). https://doi.org/10.1140/epjb/e2010-00260-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00260-9

Keywords

Navigation