Skip to main content
Log in

Spectral functions in the two-dimensional Hubbard model within a spin-charge rotating frame approach

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

We have performed electronic spectral function calculations for the Hubbard model on the square lattice using recently developed quantum SU(2) × U(1) rotor approach that enables a self-consistent treatment of the antiferromagnetic state. The collective variables for charge and spin are isolated in the form of the space-time fluctuating U(1) phase field and rotating spin quantization axis governed by the SU(2) symmetry, respectively. As a result interacting electrons appear as composite objects consisting of bare fermions with attached U(1) and SU(2) gauge fields. This allows us to write the fermion Green’s function in the space-time domain as a product of the SU(2) gauge fields, U(1) phase propagator and the pseudo-fermion correlation function. Consequently, the calculation of the spectral line shapes now reduces to performing the convolution of spin, charge and pseudo-fermion Green’s functions. The collective spin and charge fluctuations are governed by the effective actions that are derived from the Hubbard model for any value of the Coulomb interaction. The emergence of a sharp peak in the electron spectral function in the antiferromagnetic state indicates the decay of the electron into separate spin and charge carrying particle excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  2. J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  3. N.F. Mott, Metal-insulator transitions (Taylor and Francis, London, 1990)

  4. M.B.J. Meinders, H. Eskes, G.A. Sawatzky, Phys. Rev. B 48, 3916 (1993)

    Article  ADS  Google Scholar 

  5. V. Zlatić, K.D. Schotte, G. Schliecker, Phys. Rev. B 52, 3639 (1995)

    Article  ADS  Google Scholar 

  6. C.A. Lamas, J. Phys. Soc. Jpn 78, 014602 (2009)

    Article  ADS  Google Scholar 

  7. N. Bulut, D.J. Scalapino, S.R. White, Phys. Rev. Lett. 72, 705 (1994)

    Article  ADS  Google Scholar 

  8. A. Moreo, S. Haas, A.W. Sandvik, E. Dagotto, Phys. Rev. B 51, 12045 (1995)

    Article  ADS  Google Scholar 

  9. R. Preuss, W. Hanke, W. von der Linden, Phys. Rev. Lett. 75, 1344 (1995)

    Article  ADS  Google Scholar 

  10. N.S. Vidhyadhiraja, A. Macridin, C. Sen, M. Jarrell, M. Ma, arXiv:0809.1477v1

  11. O. Juillet, New J. Phys. 9, 163 (2007)

    Article  ADS  Google Scholar 

  12. N. Bulut, Adv. Phys. 51, 1587 (2002)

    Article  ADS  Google Scholar 

  13. A. Georges, G. Kotliar, W. Krauth, M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  14. Th. Maier, M. Jarrel, Th. Pruschke, M.H. Hettler, Rev. Mod. Phys. 77, 1027 (2005)

    Article  ADS  Google Scholar 

  15. Y.M. Vilk, A.-M.S. Tremblay, J. Phys. I France 7, 1309 (1997)

    Article  Google Scholar 

  16. Y.M. Vilk, L. Chen, A.-M.S. Tremblay, Phys. Rev. B 49, 13267 (1994)

    Article  ADS  Google Scholar 

  17. A.V. Chubukov, A.M. Finkelstein, R. Haslinger, D.K. Morr, Phys. Rev. Lett. 90, 077002 (2003)

    Article  ADS  Google Scholar 

  18. A.V. Chubukov, Phys. Rev. B 71, 245123 (2005)

    Article  ADS  Google Scholar 

  19. K. Borejsza, N. Dupuis, Phys. Rev. B 69, 085119 (2004)

    Article  ADS  Google Scholar 

  20. N. Dupuis, Phys. Rev. B 65, 245118 (2002)

    Article  ADS  Google Scholar 

  21. T.A. Zaleski, T.K. Kopeć, Phys. Rev. B 77, 125120 (2008)

    Article  ADS  Google Scholar 

  22. M.V. Berry, Proc. R. Soc. London, Ser. A 392, 451 (1984)

    Google Scholar 

  23. H.J. Schulz, Phys. Rev. Lett. 65, 2462 (1990)

    Article  ADS  Google Scholar 

  24. J. Hubbard, Phys. Rev. Lett. 3, 77 (1959)

    Article  ADS  Google Scholar 

  25. R.L. Stratonovich, Sov. Phys. Doklady 2, 416 (1958)

    ADS  Google Scholar 

  26. V.N. Popov, Functional integrals and collective excitations (Cambridge Univesity Press, 1987)

  27. L.S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981)

  28. T.K. Kopeć, Phys. Rev. B 72, 132503 (2005)

    Article  ADS  Google Scholar 

  29. H. Schoeller, G. Schön, Phys. Rev. B 50, 18436 (1994)

    Article  ADS  Google Scholar 

  30. E. Fradkin, Field Theories of Condensed Matter Systems (AddisonWesley, Reading, 1991)

  31. T.K. Kopeć, Phys. Rev. B 73, 104505 (2006)

    Article  ADS  Google Scholar 

  32. M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963)

    Article  ADS  Google Scholar 

  33. M.C. Gutzwiller, Phys. Rev. 137, A1726 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  34. A.V. Chubukov, D.M. Frenkel, Phys. Rev. B 46, 11884 (1992)

    Article  ADS  Google Scholar 

  35. A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer-Verlag, New York, 1994)

  36. J.C. Slater, Phys. Rev. 82, 538 (1951)

    Article  ADS  Google Scholar 

  37. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  38. A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  39. B. Kyung, S.S. Kancharla, D. Sénéchal, A.-M.S. Tremblay, M. Civelli, G. Kotliar, Phys. Rev. B 73, 165114 (2006)

    Article  ADS  Google Scholar 

  40. S. Feng, J.B. Wu, Z.B. Su, L. Yu, Phys. Rev. B 47, 15192 (1993)

    Article  ADS  Google Scholar 

  41. M. Abramovitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Zaleski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaleski, T., Kopeć, T. Spectral functions in the two-dimensional Hubbard model within a spin-charge rotating frame approach. Eur. Phys. J. B 76, 405–419 (2010). https://doi.org/10.1140/epjb/e2010-00230-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00230-3

Keywords

Navigation