Skip to main content
Log in

Structural, energetic and magnetic properties of small Tin (n = 2–13) clusters: a density functional study

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

The structural, energetic, and magnetic properties of Ti n clusters (n = 2 to 13 atoms) have been studied using Density Functional Theory (DFT), applying the pseudopotential LCAO method and the generalized gradient approximation for the exchange-correlation functional. The binding energy and the dissociation energy were calculated using the PBE and BLYP approximations for the exchange-correlation potential, in order to evaluate the performance of this functionals in predicting the energetic properties of small Ti clusters. The experimentally observed trend in the dissociation energy of Ti n as a function of the cluster size is reproduced by both PBE and BLYP calculations. The effects of structural distortion on the magnetism of clusters were studied comparing the ground state structure against non-distorted clusters. It was found that the structural distortion has no effect on the total magnetic moment. For all studied clusters using the BLYP functional, with exception of Ti6 and Ti7, magnetism is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005)

    Article  ADS  Google Scholar 

  2. A.E. Berkowitz, Magnetic Properties of Fine Particles, edited by J.L. Dormann, D. Fiorani (North-Holland, Amsterdam, 1992)

  3. B. Bogdanovic, M. Felderhoff, S. Kaskel, F. Schüth, Adv. Mater. 15, 1012 (2003)

    Article  Google Scholar 

  4. T. Yildirim, S. Ciraci, Phys. Rev. Lett. 94, 175501 (2005)

    Article  ADS  Google Scholar 

  5. T. Yildirim, J. Íñiguez, S. Ciraci, Phys. Rev. B 72, 153403 (2005)

    Article  ADS  Google Scholar 

  6. S.R. Liu, H.J. Zhai, M. Castro, L.S. Wang, J. Chem. Phys 118, 2108 (2003)

    Article  ADS  Google Scholar 

  7. M. Sakurai, K. Watanabe, K. Sumiyama, K. Suzuki, J. Chem. Phys. 111, 235 (1999)

    Article  ADS  Google Scholar 

  8. L. Lian, C-X. Su, P.B. Armentrout, J. Chem. Phys. 97, 4084 (1992)

    Article  ADS  Google Scholar 

  9. S.H. Wei, Z. Zeng, J.Q. You, X.H. Yan, X.G. Gong, J. Chem. Phys. 113, 11127 (2000)

    Article  ADS  Google Scholar 

  10. M. Castro, S.R. Liu, H.J. Zhai, L.S. Wang, J. Chem. Phys. 118, 2116 (2003)

    Article  ADS  Google Scholar 

  11. M. Salazar-Villanueva, P. Hernández, U. Pal, J. Rivas-Silva, J. Rodríguez, J. Ascencio, J. Phys. Chem. A 110, 10274 (2006)

    Article  Google Scholar 

  12. S. Wang, W. Duan, D. Zhao, C. Wang, Phys. Rev. B 65, 165424 (2002)

    Article  ADS  Google Scholar 

  13. B. Lee, G.W. Lee, J. Chem. Phys. 127, 164316 (2007)

    Article  ADS  Google Scholar 

  14. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  15. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  16. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  17. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  18. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sanchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002), see also http://www.uam.es/siesta

    Article  URL  ADS  Google Scholar 

  19. P. Ordejón, E. Artacho, J.M. Soler, Phys. Rev. B 53, 10441 (1996)

    Article  ADS  Google Scholar 

  20. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  21. W.H. Press, Numerical Recipes in C, 2nd edn. (Cambridge University Press, 1992), Chap. 10.4

  22. E. Anglada, J.M. Soler, J. Junquera, E. Artacho, Phys. Rev B 66, 205101 (2002)

    Article  ADS  Google Scholar 

  23. O.F. Sankey, D.J. Nikleswki, Phys. Rev. B 40, 3979 (1989)

    Article  ADS  Google Scholar 

  24. C. Kittel, Introduction to Solid State Physics, 6th edn. (John Wiley & Sons, Inc., 1986), p. 23

  25. D. Kumar, F. Weck, N. Balakrishnan, J. Phys. Chem. C 111, 7494 (2007)

    Article  Google Scholar 

  26. E. Carvajal, O. Hahn-Herrera, E. Orgaz, Rev. Mex. Fis. 55, 418 (2009)

    Google Scholar 

  27. J.A. Alonso, Chem. Rev. 100, 637 (2000)

    Article  Google Scholar 

  28. S. Wang, J. Yu, H. Mizuseki, J. Yan, Y. Kawazoe, C. Wang, J. Chem. Phys. 120, 8463 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Canto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina, J., de Coss, R., Tapia, A. et al. Structural, energetic and magnetic properties of small Tin (n = 2–13) clusters: a density functional study. Eur. Phys. J. B 76, 427–433 (2010). https://doi.org/10.1140/epjb/e2010-00214-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00214-3

Keywords

Navigation