Skip to main content
Log in

Cluster synchronization in networks of distinct groups of maps

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

In this paper, we study cluster synchronization in general bi-directed networks of nonidentical clusters, where all nodes in the same cluster share an identical map. Based on the transverse stability analysis, we present sufficient conditions for local cluster synchronization of networks. The conditions are composed of two factors: the common inter-cluster coupling, which ensures the existence of an invariant cluster synchronization manifold, and communication between each pair of nodes in the same cluster, which is necessary for chaos synchronization. Consequently, we propose a quantity to measure the cluster synchronizability for a network with respect to the given clusters via a function of the eigenvalues of the Laplacian corresponding to the generalized eigenspace transverse to the cluster synchronization manifold. Then, we discuss the clustering synchronous dynamics and cluster synchronizability for four artificial network models: (i) p-nearest-neighborhood graph; (ii) random clustering graph; (iii) bipartite random graph; (iv) degree-preferred growing clustering network. From these network models, we are to reveal how the intra-cluster and inter-cluster links affect the cluster synchronizability. By numerical examples, we find that for the first model, the cluster synchronizability regularly enhances with the increase of p, yet for the other three models, when the ratio of intra-cluster links and the inter-cluster links reaches certain quantity, the clustering synchronizability reaches maximal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pikovsky, M. Roseblum, J. Kurths, Synchronization: A universal concept in nonlinear sciences (Cambridge University Press, 2001)

  2. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  3. X.F. Wang, G. Chen, IEEE Circ. Syst. Mag. 3, 6 (2003)

    Article  Google Scholar 

  4. H. Fujisaka, T. Yamada, Prog. Theor. Phys. 69, 32 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. H. Fujisaka, T. Yamada, Prog. Theor. Phys. 72, 885 (1984)

    Article  ADS  Google Scholar 

  6. V.S. Afraimovich, N.N. Verichev, M.I. Rabinovich, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 29, 795 (1986)

    MathSciNet  ADS  Google Scholar 

  7. S.H. Strogatz, I. Stewart, Sci. Amer. 269, 102 (1993)

    Article  Google Scholar 

  8. L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 64, 821 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  9. J.F. Heagy, T.L. Carroll, L.M. Pecora, Phys. Rev. E. 50, 1874 (1994)

    Article  ADS  Google Scholar 

  10. J. Jost, M.P. Joy, Phys. Rev. E 65, 016201 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  11. X.F. Wang, G. Chen, IEEE Trans. Circ. Syst. I 49, 54 (2002)

    Article  Google Scholar 

  12. G. Rangarajan, M. Ding: Phys. Lett. A 296, 204 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Y.H. Chen, G. Rangarajan, M. Ding: Phys. Rev. E. 67, 026209 (2003)

    Article  ADS  Google Scholar 

  14. C.W. Wu, L.O. Chua, IEEE Trans. Circuits Syst. I 42, 430 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. I.V. Belykh, V.N. Belykh, M. Hasler, Physica D 195, 159 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. I.V. Belykh, V.N. Belykh, M. Hasler, Physica D 195, 188 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. J. Cao, P. Li, W. Wang, Phys. Lett. A 353, 318 (2006)

    Article  ADS  Google Scholar 

  18. W. Lu, T. Chen, Physica D 213, 214 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. A. Schnitzler, J. Gross, Nat. Rev. Neurosci 6, 285 (2005)

    Article  Google Scholar 

  20. P.R. Chandler, M. Patcher, S. Rasmussen, Proceedings of the American Control Society, 20 (2001)

  21. K.M. Passino, IEEE Control Syst. Mag. 22, 52 (2002)

    Article  Google Scholar 

  22. J. Finke, K. Passino, A.G. Sparks, IEEE Control Syst. Mag. 14, 789 (2006)

    Google Scholar 

  23. B. Blasius, A. Huppert, L. Stone, Nature (London) 399, 354 (1999)

    Article  ADS  Google Scholar 

  24. E. Montbrió, J. Kurths, B. Blasius, Phys. Rev. E 70, 056125 (2004)

    Article  ADS  Google Scholar 

  25. N.F. Rulkov, Chaos 6, 262 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  26. L. Stone, R. Olinky, B. Blasius, A. Huppert, B. Cazelles, Proceedings of the Sixth Experimental Chaos Conference, AIP Conf. Proc. No. 662, (2002), p. 476

  27. E. Jones, B. Browning, M.B. Dias, B. Argall, M. Veloso, A. Stentz, Proceedings IEEE International Conference on Robotics and Automation, Orlando, 570 (2006)

  28. K.-S, Hwang, S.-W. Tan, C.-C. Chen, IEEE Trans. Fuzzy Syst. 12, 569 (2004)

    Article  Google Scholar 

  29. V.N. Belykh, I.V. Belykh, M. Hasler, Phys. Rev. E 62, 6332 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  30. V.N. Belykh, I.V. Belykh, E. Mosekilde, Phys. Rev. E 63, 036216 (2001)

    Article  ADS  Google Scholar 

  31. Z. Ma, Z. Liu, G. Zhang, Chaos 16, 023103 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  32. W. Wu, T. Chen, Physica D 238, 355 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. W. Wu, W. Zhou, T. Chen, IEEE Trans. Circuits Syst. -I, in press (2008)

  34. S. Jalan, R.E. Amritkar, Phys. Rev. Lett. 90, 014101 (2003)

    Article  ADS  Google Scholar 

  35. S. Jalan, R.E. Amritkar, C.-K. Hu, Phys. Rev. E 72, 016211 (2005)

    Article  ADS  Google Scholar 

  36. S. Jalan, R.E. Amritkar, C.-K. Hu, Phys. Rev. E 72, 016212 (2005)

    Article  ADS  Google Scholar 

  37. X. Liu, T. Chen, Physica D 237, 630 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. F. Sorrentino, E. Ott, Phys. Rev. E 76, 056114 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  39. L. Chen, J. Lu, J. Syst. Sci. Complexity 20, 21 (2008)

    Google Scholar 

  40. I.V. Belykh, V.N. Belykh, M. Hasler, Chaos 13, 165 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. W. Lu, B. Liu, T. Chen, Chaos 20, 013120 (2010)

    Article  ADS  Google Scholar 

  42. The sense of transverse stability is diverse according to the ergodic measure by which the MLE is computed. For instance, Milnor stability, essential stability, or Lyapunov stability. These can correspond to the diversity of the senses of cluster synchronization we discuss in this paper. To avoid rigorous mathematics, we do not present the details. For interesting readers, we refer to [44] for the details

  43. A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  44. P. Ashwin, J. Buescu, I. Stewart, Nonlinearity 9, 703 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. P.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, New York, 1985)

  46. Q.-C. Pham, J.-J. Slotine, Neural Netw. 20, 62 (2007)

    Article  MATH  Google Scholar 

  47. W. Lohmiller, J.-J. Slotine, Automatica 34, 671 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. L. Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, W., Liu, B. & Chen, T. Cluster synchronization in networks of distinct groups of maps. Eur. Phys. J. B 77, 257–264 (2010). https://doi.org/10.1140/epjb/e2010-00202-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00202-7

Keywords

Navigation