Skip to main content
Log in

Network evolution based on minority game with herding behavior

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The minority game (MG) is used as a source of information to design complex networks where the nodes represent the playing agents. Differently from classical MG consisting of independent agents, the current model rules that connections between nodes are dynamically inserted or removed from the network according to the most recent game outputs. This way, preferential attachment based on the concept of social distance is controlled by the agents wealth. The time evolution of the network topology, quantitatively measured by usual parameters, is characterized by a transient phase followed by a steady state, where the network properties remain constant. Changes in the local landscapes around individual nodes depend on the parameters used to control network links. If agents are allowed to access the strategies of their network neighbors, a feedback effect on the network structure and game outputs is observed. Such effect, known as herding behavior, considerably changes the dependence of volatility σ on memory size: it is shown that the absolute value of σ as well as the corresponding value of memory size depend both on the network topology and on the way along which the agents make their playing decisions in each game round.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. LeBaron, J. Econ. Dyn. Control 24, 679 (2000)

    Article  MATH  Google Scholar 

  2. N.F. Johnson, P. Jefferies, P.M. Hui, Financial market complexity (Oxford University Press, Oxford, 2003)

  3. D. Challet, Y.C. Zhang, Physica A 246, 407 (1997)

    Article  ADS  Google Scholar 

  4. W.B. Arthur, Am. Econ. Rev. 84, 406 (1994)

    Google Scholar 

  5. A.C.C. Coolen, The mathematical theory of minority games (Oxford University Press, Oxford, 2005)

  6. D. Challet, M. Marsili, Y.C. Zhang, Minority games (Oxford University Press, Oxford, 2005)

  7. R. Savit, R. Manuca, R. Riolo, Phys. Rev. Lett. 82, 2203 (1999)

    Article  ADS  Google Scholar 

  8. T. Kalinowski, H.-J. Schulz, M. Briese, Physica A 277, 502 (2000)

    Article  ADS  Google Scholar 

  9. S. Moelbert, P.D.L. Rios, Physica A 303, 217 (2002)

    Article  MATH  ADS  Google Scholar 

  10. A. Galstyan, K. Lerman, Phys. Rev. E 66, 015103 (2002)

    Article  ADS  Google Scholar 

  11. H.J. Quan, B.H. Wang, P.M. Hui et al., Physica A 321, 300 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. H.F. Chau, F.K. Chow, K.H. Ho, Physica A 332, 483 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  13. Y. Li, R. Savit, Physica A 335, 217 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  14. E. Burgos, H. Ceva, R.P.J. Perazzo, Physica A 337, 635 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  15. I. Caridi, H. Ceva, Physica A 339, 574 (2004)

    Article  ADS  Google Scholar 

  16. L. Shang, X.F. Wang, Physica A 361, 643 (2006)

    Article  ADS  Google Scholar 

  17. M. Kirley, Physica A 365, 521 (2005)

    Article  ADS  Google Scholar 

  18. H. Lavicka, F. Slanina, Eur. Phys. J. B 56, 53 (2007)

    Article  ADS  Google Scholar 

  19. D.O. Cajueiro, R.S. DeCamargo, Phys. Lett. A 355, 280 (2006)

    Article  MATH  ADS  Google Scholar 

  20. D.O. Cajueiro, Phys. Rev. E 72, 047104 (2005)

    Article  ADS  Google Scholar 

  21. M.O. Jackson, B.W. Rogers, J. Eur. Econ. Assoc. 3, 617 (2005)

    Google Scholar 

  22. R. Carvalho, G. Iori, Phys. Rev. E 78, 016110 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  23. P. Erdós, A. Rényi, Bulletin of the International Statistical Institute 38, 343 (1960)

    Google Scholar 

  24. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  25. D.J. Watts, Small worlds: the dynamics of networks between order and randomness (Princeton University Press, Princeton, 1999)

  26. A.L. Barabasi, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  27. C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)

    Article  ADS  Google Scholar 

  28. M.L. Lyra, U.M.S. Costa, R.N.C. Filho et al., Europhys. Lett. 62, 131 (2003)

    Article  ADS  Google Scholar 

  29. A.A. Moreira, D.R. Paula, R.N. Costa et al., Phys. Rev. E 73, 065101 (2006)

    Article  ADS  Google Scholar 

  30. P.G. Lind, L.R.D. Silva, J.S.A. Jr. et al., Phys. Rev. E 76, 036117 (2007)

    Article  ADS  Google Scholar 

  31. A.A. Moreira, A. Mathur, D. Diermeier et al., Proceedings of the National Academy of Sciences of the United States of America 101, 12085 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. B.A. Mello, L.H. Batistuta, R. Boueri et al., Phys. Lett. A 28, 126 (2009)

    Article  ADS  Google Scholar 

  33. V. Schwammle, M.C. Gonzalez, A.A. Moreira et al., Phys. Rev. E 75, 066108 (2007)

    Article  ADS  Google Scholar 

  34. M. Anghel, Z. Toroczkai, K.E. Bassler et al., Phys. Rev. Lett. 92, 058701 (2004)

    Article  ADS  Google Scholar 

  35. M. Boguña, R. Pastor-Satorras, A. Diaz-Guilera et al., Phys. Rev. E 70, 056122 (2004)

    Article  ADS  Google Scholar 

  36. G.C.M.A. Ehrhardt, M. Marsili, F. Vega-Redondo, Phys. Rev. E 74, 036106 (2006)

    Article  ADS  Google Scholar 

  37. A. Grabowski, R.A. Kosinki, Phys. Rev. E 73, 016135 (2006)

    Article  ADS  Google Scholar 

  38. E.M. Jin, M. Girvan, M.E.J. Newman, Phys. Rev. E 64, 046132 (2001)

    Article  ADS  Google Scholar 

  39. D.J.B. Soares, C. Tsallis, A.M. Mariz et al., Europhys. Lett. 70, 70 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  40. L.H. Wong, P. Pattison, G. Robins, Physica A 360, 99 (2006)

    Article  ADS  Google Scholar 

  41. K. Kosmidis, S. Havlin, A. Bunde, Europhys. Lett. 82, 48005 (2008)

    Article  ADS  Google Scholar 

  42. R. Lambiotte, V.D. Blondel, C. De-Kerchove et al., Physica A 387, 5317 (2008)

    Article  ADS  Google Scholar 

  43. J. Wakeling, P. Bak, Phys. Rev. E 64, 051920 (2001)

    Article  ADS  Google Scholar 

  44. B.A. Mello, D.O. Cajueiro, Physica A 387, 557 (2008)

    Article  ADS  Google Scholar 

  45. D. Challet, M. Marsili, G. Ottino, Physica A 332, 469 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  46. C.P. Chamley, Rational herds: economic models of social learning (Cambridge University Press, Cambridge, 2004)

  47. C. Song, S. Havlin, H.A. Makse, Nature 433, 392 (2005)

    Article  ADS  Google Scholar 

  48. M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)

    Article  ADS  Google Scholar 

  49. M.E.J. Newman, J. Park, Phys. Rev. E 68, 036122 (2003)

    Article  ADS  Google Scholar 

  50. R. Toivonen, J.P. Onella, J. Saramaki, Physica A 371, 851 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Mello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mello, B., Souza, V., Cajueiro, D. et al. Network evolution based on minority game with herding behavior. Eur. Phys. J. B 76, 147–156 (2010). https://doi.org/10.1140/epjb/e2010-00179-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00179-1

Keywords

Navigation