Skip to main content
Log in

Regulatory networks and connected components of the neutral space

A look at functional islands

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

The functioning of a living cell is largely determined by the structure of its regulatory network, comprising non-linear interactions between regulatory genes. An important factor for the stability and evolvability of such regulatory systems is neutrality – typically a large number of alternative network structures give rise to the necessary dynamics. Here we study the discretized regulatory dynamics of the yeast cell cycle [Li et al., PNAS, 2004] and the set of networks capable of reproducing it, which we call functional. Among these, the empirical yeast wildtype network is close to optimal with respect to sparse wiring. Under point mutations, which establish or delete single interactions, the neutral space of functional networks is fragmented into 4.7 × 108 components. One of the smaller ones contains the wildtype network. On average, functional networks reachable from the wildtype by mutations are sparser, have higher noise resilience and fewer fixed point attractors as compared with networks outside of this wildtype component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, UK, 1983)

  2. A. Wagner, Robustness and Evolvability in Living Systems (Princeton University Press, 2005)

  3. P. Schuster, W. Fontana, P.F. Stadler, I.L. Hofacker, Proc. Roy. Soc. Lond. B 255, 279 (1994)

    Article  ADS  Google Scholar 

  4. A. Babajide, I.L. Hofacker, M.J. Sippl, P.F. Stadler, Fold Des. 2, 261 (1997)

    Article  Google Scholar 

  5. E. Davidson, M. Levin, Proceedings of the National Academy of Sciences of the United States of America 102, 4935 (2005)

    Article  ADS  Google Scholar 

  6. S. Bornholdt, K. Sneppen, Phys. Rev. Lett. 81, 236 (1998)

    Article  ADS  Google Scholar 

  7. S. Ciliberti, O.C. Martin, A. Wagner, Proceedings of the National Academy of Sciences of the United States of America 104, 13591 (2007)

    Article  ADS  Google Scholar 

  8. S. Ciliberti, O.C. Martin, A. Wagner, PLoS Computational Biology 3, e15 (2007)

  9. F. Stauffer, J. Berg, EPL 88, 48004 (2009)

    Article  ADS  Google Scholar 

  10. F. Li, T. Long, Y. Lu, Q. Ouyang, C. Tang, Proceedings of the National Academy of Sciences of the United States of America 101, 4781 (2004)

    Article  ADS  Google Scholar 

  11. P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O. Brown, D. Botstein, B. Futcher, Mol. Biol. Cell. 9, 3273 (1998)

    Google Scholar 

  12. S. Kauffman, J. Theor. Biol. 22, 437 (1969)

    Article  MathSciNet  Google Scholar 

  13. B. Drossel, Reviews of Nonlinear Dynamics and Complexity (Wiley-VCH, 2008), Chap. Random Boolean Networks, Vol. 1, pp. 69–99

  14. K.Y. Lau, S. Ganguli, C. Tang, Phys. Rev. E 75, 051907 (2007)

    Article  ADS  Google Scholar 

  15. W. Imrich, Product Graphs: Structure And Recognition (Wiley Interscience Series in Discrete Mathematics, 2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Boldhaus or K. Klemm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boldhaus, G., Klemm, K. Regulatory networks and connected components of the neutral space. Eur. Phys. J. B 77, 233–237 (2010). https://doi.org/10.1140/epjb/e2010-00176-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00176-4

Keywords

Navigation