Skip to main content
Log in

Scaling and complex avalanche dynamics in the Abelian sandpile model

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the two-dimensional Abelian Sandpile Model on a square lattice of linear size L. We introduce the notion of avalanche’s fine structure and compare the behavior of avalanches and waves of toppling. We show that according to the degree of complexity in the fine structure of avalanches, which is a direct consequence of the intricate superposition of the boundaries of successive waves, avalanches fall into two different categories. We propose scaling ansätz for these avalanche types and verify them numerically. We find that while the first type of avalanches (α) has a simple scaling behavior, the second complex type (β) is characterized by an avalanche-size dependent scaling exponent. In particular, we define an exponent γ to characterize the conditional probability distribution functions for these types of avalanches and show that γ α = 0.42, while 0.7 ≤ γ β ≤ 1.0 depending on the avalanche size. This distinction provides a framework within which one can understand the lack of a consistent scaling behavior in this model, and directly addresses the long-standing puzzle of finite-size scaling in the Abelian sandpile model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  2. P. Bak, How Nature Works: The Science of Self-Organized Criticality (Copernicus, New York, 1996)

  3. H.J. Jensen, Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems (Cambridge University Press, 1998)

  4. K. Christensen, N.R. Moloney, Complexity and Criticality (Imperial College Press, Advanced Physics Texts, 2005), Vol. 1

  5. D. Dhar, Studying Self-Organized Criticality with Exactly Solved Models, arXiv:cond-mat/9909009

  6. M. Alava, Self-Organized Criticality as a Phase Transition, arXiv: cond-mat/0307688

  7. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. A 59, 364 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Levina, U. Ernst, J.M. Herrmann, Neurocomputing 70, 1877 (2007)

    Article  Google Scholar 

  9. A. Levina, J.M. Herrmann, T. Geisel, Phys. Rev. Lett. 102, 118110 (2009)

    Article  ADS  Google Scholar 

  10. O. Ramos, E. Altshuler, K.J. Måløy, Phys. Rev. Lett. 102, 078701 (2009)

    Article  ADS  Google Scholar 

  11. F. Pérez-Reche, L. Truskinovsky, G. Zanzotto, Phys. Rev. Lett. 101, 230601 (2008)

    Article  Google Scholar 

  12. V. Frette, K. Christensen, A. Malthe-Sørenssen, J. Feder, T. Jøssang, P. Meakin, Nature 379, 49 (1996)

    Article  ADS  Google Scholar 

  13. S. Field, J. Witt, F. Nori, Phys. Rev. Lett. 74, 1206 (1995)

    Article  ADS  Google Scholar 

  14. T. Vicsek, Fluctuations and scaling in biology (Oxford University Press, 2001)

  15. D. Raup, Science 231, 1528 (1986)

    Article  ADS  Google Scholar 

  16. T. Krink, R. Thomsen, Self-organized criticality and mass extinction in evolutionary algorithms, Proc. IEEE Int. Conf. on Evolutionary Computation (2001), pp. 1155–1161

  17. V.M. Uritsky, M. Paczuski, J.M. Davila, S.I. Jones, Phys. Rev. Lett. 99, 025001 (2007)

    Article  ADS  Google Scholar 

  18. M. Paczuski, S. Boettcher, M. Baiesi, Phys. Rev. Lett. 95, 181102 (2005)

    Article  ADS  Google Scholar 

  19. D. Hughes, M. Paczuski, R.O. Dendy, P. Helander, K.G. McClements, Phys. Rev. Lett. 90, 131101 (2003)

    Article  ADS  Google Scholar 

  20. K. Christensen, Self-Organized Criticality in Models of Sandpiles, Earthquakes, and Flashing Fireflies, Ph.D. Thesis, Department of Physics, University of Århus, Denmark, 1992

  21. L.P. Kadanoff, S.R. Nagel, L. Wu, S. Zhou, Phys. Rev. A 39, 6524 (1989)

    Article  ADS  Google Scholar 

  22. Z. Olami, H.J.S. Feder, K. Christensen, Phys. Rev. Lett. 68, 1244 (1992)

    Article  ADS  Google Scholar 

  23. K. Christensen, A. Corral, V. Frette, J. Feder, T. Joessang, Phys. Rev. Lett. 77, 107 (1996)

    Article  ADS  Google Scholar 

  24. S.S. Manna, J. Phys. A 24, L363 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  25. D. Dhar, Phys. Rev. Lett. 64, 1613 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. L. Pietronero, A. Vespignani, S. Zapperi, Phys. Rev. Lett. 72, 1690 (1994)

    Article  ADS  Google Scholar 

  27. A. Vespignani, S. Zapperi, L. Pietronero, Phys. Rev. E 51, 1711 (1995)

    Article  ADS  Google Scholar 

  28. A. Montakhab, J.M. Carlson, Phys. Rev. E 58, 5608 (1998)

    Article  ADS  Google Scholar 

  29. J.M. Carlson, E.R. Grannan, C. Singh, G.H. Swindle, Phys. Rev. E 48, 688 (1993)

    Article  ADS  Google Scholar 

  30. V.B. Priezzhev, D.V. Ktitarev, E.V. Ivashkevich, Phys. Rev. Lett. 76, 2093 (1996)

    Article  ADS  Google Scholar 

  31. E.V. Ivashkevich, Phys. Rev. Lett. 76, 3368 (1996)

    Article  ADS  Google Scholar 

  32. S.N. Majumdar, D. Dhar, J. Phys. A 24, L357 (1991)

    Article  ADS  Google Scholar 

  33. V.B. Priezzhev, J. Stat. Phys. 74, 955 (1994)

    Article  ADS  Google Scholar 

  34. E.V. Ivashkevich, J. Phys. A 27, 3643 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  35. D. Dhar, T. Sadhu, S. Chandra, Pattern formation in growing sandpiles, arXiv: 0808.1732

  36. D. Dhar, Physica A 369, 29 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  37. C. Tang, P. Bak, Phys. Rev. Lett. 60, 2347 (1988)

    Article  ADS  Google Scholar 

  38. N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group Frontiers in Physics (Addison-Wesley, 1992), Vol. 85

  39. M. De Menech, A.L. Stella, C. Tebaldi, Phys. Rev. E 58, 2677 (1998)

    Article  ADS  Google Scholar 

  40. C. Tebaldi, M. De Menech, A.L. Stella, Phys. Rev. Lett. 83, 3952 (1999)

    Article  ADS  Google Scholar 

  41. S. Lübeck, K.D. Usadel, Phys. Rev. E 55, 4095 (1997)

    Article  ADS  Google Scholar 

  42. A. Chessa, H.E. Stanley, A. Vespignani, S. Zapperi, Phys. Rev. E 59, R12 (1999)

    Article  ADS  Google Scholar 

  43. B. Drossel, Phys. Rev. E 61, R2168 (2000)

    Article  ADS  Google Scholar 

  44. D.V. Ktitarev, S. Lübeck, P. Grassberger, V.B. Priezzhev, Phys. Rev. E 61, 81 (2000)

    Article  ADS  Google Scholar 

  45. E.V. Ivashkevich, D.V. Ktitarev, V.B. Priezzhev, Physica A 209, 347 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  46. M. Paczuski, S. Boettcher, Phys. Rev. E 56 , R3745 (1997)

  47. M. De Menech, A.L. Stella, Phys. Rev. E 62, R4528 (2000)

    Article  ADS  Google Scholar 

  48. A.A. Ali, D. Dhar, Phys. Rev. E 52, 4804 (1995)

    Article  ADS  Google Scholar 

  49. The reason for this is the saturation of average number of waves as a function of area in the case of type α avalanches, so that the exponent γ introduce in reference [30] is nearly zero for intermediate and large α avalanches, see reference [53]

  50. R. Karmakar, S.S. Manna, A.L. Stella, Phys. Rev. Lett. 94, 088002 (2005)

    Article  ADS  Google Scholar 

  51. R. Pastor-Satorras, A. Vespignani, Eur. Phys. J. B 18, 197 (2000)

    Article  ADS  Google Scholar 

  52. A. Montakhab, F. Mohamadpour (to be submitted)

  53. A. Abdolvand, A. Montakhab (to be submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Montakhab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdolvand, A., Montakhab, A. Scaling and complex avalanche dynamics in the Abelian sandpile model. Eur. Phys. J. B 76, 21–30 (2010). https://doi.org/10.1140/epjb/e2010-00164-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00164-8

Keywords

Navigation