The European Physical Journal B

, Volume 75, Issue 2, pp 167–177 | Cite as

Temperature dependence of the electrical resistivity and the anisotropic magnetoresistance (AMR) of electrodeposited Ni-Co alloys

  • B. G. Tóth
  • L. Péter
  • Á. Révész
  • J. Pádár
  • I. Bakonyi
Solid State and Materials

Abstract

The electrical resistivity and the anisotropic magnetoresistance (AMR) was investigated for Ni-Co alloys at and below room temperature. The Ni-Co alloy layers having a thickness of about 2 μm were prepared by electrodeposition on Si wafers with evaporated Cr and Cu underlayers. The alloy composition was varied in the whole concentration range by varying the ratio of Ni-sulfate and Co-sulfate in the electrolyte. The Ni-Co alloy deposits were investigated first in the as-deposited state on the substrates and then, by mechanically stripping them from the substrates, as self-supporting layers both without and after annealing. According to an X-ray diffraction study, a strongly textured face-centered cubic (fcc) structure was formed in the as-deposited state with an average grain size of about 10 nm. Upon annealing, the crystal structure was retained whereas the grain size increased by a factor of 3 to 5, depending on alloy composition. The zero-field resistivity decreased strongly by annealing due to the increased grain size. The annealing hardly changed the AMR below 50 at.% Co but strongly decreased it above this concentration. The composition dependence of the resistivity and the AMR of the annealed Ni-Co alloy deposits was in good quantitative agreement with the available literature data both at 13 K and at room temperature. Both transport parameters were found to exhibit a pronounced maximum in the composition range between 20 and 30 at.% Co and the data of the Ni-Co alloys fitted well to the limiting values of the pure component metals (fcc-Ni and fcc-Co). The only theoretical calculation reported formerly on fcc Ni-Co alloys yielded at T = 0 K a resistivity value smaller by a factor of 5 and an AMR value larger by a factor of about 2 than the corresponding low-temperature experimental data, although the theoretical study properly reproduced the composition dependence of both quantities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39, 4828 (1989)CrossRefADSGoogle Scholar
  2. 2.
    M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)CrossRefADSGoogle Scholar
  3. 3.
    R.M. Bozorth, Ferromagnetism (Van Nostrand, New York, 1951)Google Scholar
  4. 4.
    T.R. McGuire, R.I. Potter, IEEE Trans. Magn. 11, 1018 (1975)CrossRefADSGoogle Scholar
  5. 5.
    R.C. O’Handley, Modern Magnetic Materials — Principles and Applications (Wiley, New York, 2000)Google Scholar
  6. 6.
    P. Mlejnek, M. Vopálensky, P. Ripka, Sensors and Actuators A 141, 649 (2008)CrossRefGoogle Scholar
  7. 7.
    J. Vèelák, P. Ripka, A. Platil, J. Kubík, P. Kašpar, Sensors and Actuators A 129, 53 (2006)CrossRefGoogle Scholar
  8. 8.
    P. Ripka, M. Tondra, J. Stokes, R. Beech, Sensors and Actuators 76, 225 (1999)CrossRefGoogle Scholar
  9. 9.
    J.M. Daughton, J. Magn. Magn. Mater. 192, 334 (1999)CrossRefADSGoogle Scholar
  10. 10.
    A. Brenner, Electrodeposition of Alloys (Academic Press, New York, 1963), Vols. I–IIGoogle Scholar
  11. 11.
    W. Schwarzacher, M. Alper, R. Hart, G. Nabiyouni, I. Bakonyi, E. Tóth-Kádár, in: MRS Symp. Proc. (1997), Vol. 451, p. 347Google Scholar
  12. 12.
    E. Tóth-Kádár, L. Péter, T. Becsei, J. Tóth, L. Pogány, T. Tarnóczi, P. Kamasa, I. Bakonyi, G. Láng, Á. Cziráki, W. Schwarzacher, J. Electrochem. Soc. 147, 3311 (2000)CrossRefGoogle Scholar
  13. 13.
    I. Bakonyi, E. Tóth Kádár, J. Tóth, L.F. Kiss, L. Pogány, Á. Cziráki, C. Ulhaq-Bouillet, V. Pierron-Bohnes, A. Dinia, B. Arnold, K. Wetzig, Europhys. Lett. 58, 408 (2002)CrossRefADSGoogle Scholar
  14. 14.
    I. Bakonyi, E. Tóth Kádár, á. Cziráki, J. Tóth, L.F. Kiss, C. Ulhaq-Bouillet, V. Pierron-Bohnes, A. Dinia, B. Arnold, K. Wetzig, P. Santiago, M.-J. Yacamán, J. Electrochem. Soc. 149, C469 (2002)CrossRefGoogle Scholar
  15. 15.
    I. Bakonyi, J. Tóth, L.F. Kiss, E. Tóth-Kádár, L. Péter, A. Dinia, J. Magn. Magn. Mater. 269, 156 (2004)CrossRefADSGoogle Scholar
  16. 16.
    I. Kazeminezhad, W. Schwarzacher, J. Solid State Electrochem. 8, 187 (2004)CrossRefGoogle Scholar
  17. 17.
    I. Bakonyi, L. Péter, Z. Rolik, K. Kiss-Szabó, Z. Kupay, J. Tóth, L.F. Kiss, J. Pádár, Phys. Rev. B 70, 054427/1-10 (2004)Google Scholar
  18. 18.
    I. Bakonyi, L. Péter, Progr. Mater. Sci. 55, 107 (2010)CrossRefGoogle Scholar
  19. 19.
    V.M. Fedosyuk, O.I. Kasyutich, D. Ravinder, H.J. Blythe, J. Magn. Magn. Mater. 156, 345 (1996)CrossRefADSGoogle Scholar
  20. 20.
    Y. Jyoko, S. Kashiwabara, Y. Hayashi, J. Electrochem. Soc. 144, L193 (1997)CrossRefGoogle Scholar
  21. 21.
    H. Zaman, A. Yamada, H. Fukuda, Y. Ueda, J. Electrochem. Soc. 145, 565 (1998)CrossRefGoogle Scholar
  22. 22.
    S.H. Ge, H.H. Li, C. Li, L. Xi, W. Li, J.H. Chi, J. Phys.: Cond. Matter 12, 5905 (2000)CrossRefADSGoogle Scholar
  23. 23.
    T.G.R. Pattanaik, S.C. Kashyap, D.K. Pandya, J. Magn. Magn. Mater. 219, 309 (2000)CrossRefADSGoogle Scholar
  24. 24.
    S. Kainuma, K. Takayanagi, K. Hisatake, T. Watanabe, J. Magn. Magn. Mater. 246, 372073 (2002)CrossRefGoogle Scholar
  25. 25.
    R. Lopez Anton, M.L. Fernandez-Gubieda, G. Kurlandskaya, A. Garcia-Arribas, J. Magn. Magn. Mater. 254–255, 85 (2003)CrossRefGoogle Scholar
  26. 26.
    T. Cohen-Hyams, J.M. Plitzko, C.J.D. Hetherington, J.L. Hutchinson, J. Yahalom, W.D. Kaplan, J. Mater. Sci. 39, 5701 (2004)CrossRefADSGoogle Scholar
  27. 27.
    S. Pane, E. Gomez, E. Valles, J. Electroanal. Chem. 596, 87 (2006)CrossRefGoogle Scholar
  28. 28.
    S. Kenane, J. Voiron, N. Benbrahim, E. Chainet, F. Robaut, J. Magn. Magn. Mater. 297, 99 (2006)CrossRefADSGoogle Scholar
  29. 29.
    J.L. Snoek, Nature 163, 837 (1949)CrossRefADSGoogle Scholar
  30. 30.
    H.C. van Elst, Physica 25, 708 (1959)CrossRefADSGoogle Scholar
  31. 31.
    J. Smit, Physica 17, 612 (1951)CrossRefADSGoogle Scholar
  32. 32.
    T. Miyazaki, M. Oikawa, J. Magn. Magn. Mater. 97, 171 (1991)CrossRefADSGoogle Scholar
  33. 33.
    H. Kubota, S. Ishio, T. Miyazaki, Z.M. Stadnik, J. Magn. Magn. Mater. 129, 383 (1994)CrossRefADSGoogle Scholar
  34. 34.
    T. Miyazaki, H. Kubota, M. Sato, Mater. Sci. Eng. B 31, 213 (1995)CrossRefGoogle Scholar
  35. 35.
    T. Miyazaki, J. Kondo, H. Kubota, J. Inoue, J. Appl. Phys. 81, 5187 (1997)CrossRefADSGoogle Scholar
  36. 36.
    Y. Bian, J.O. Ström-Olsen, Z. Altounian, Y. Huai, R.W. Cochrane, J. Appl. Phys. 75, 7064 (1994)CrossRefADSGoogle Scholar
  37. 37.
    J. Banhart, H. Ebert, Europhys. Lett. 32, 517 (1995)CrossRefADSGoogle Scholar
  38. 38.
    J. Banhart, H. Ebert, A. Vernes, Phys. Rev. B 56, 10165 (1997)CrossRefADSGoogle Scholar
  39. 39.
    S. Khmelevskyi, K. Palotas, L. Szunyogh, P. Weinberger, Phys. Rev. B 68, 012402 (2003)CrossRefADSGoogle Scholar
  40. 40.
    K. Vyborny, A.V. Kovalev, J. Sinova, T. Jungwirth, Phys. Rev. B 79, 045427 (2009)CrossRefADSGoogle Scholar
  41. 41.
    S. Lowitzer, D. Ködderitzsch, H. Ebert, J.B. Staunton, Phys. Rev. B 79, 115109 (2009)CrossRefADSGoogle Scholar
  42. 42.
    Binary Alloy Phase Diagrams, edited by T.B. Massalski, 2nd edn plus updates on CD-ROM, ASM International, Materials Park, Ohio, USA, 1996Google Scholar
  43. 43.
    A. Bartók, A. Csík, K. Vad, Gy. Molnár, E. Tóth-Kádár, L. Péter, J. Eletrochem. Soc. 156, D253 (2009)CrossRefGoogle Scholar
  44. 44.
    L. Péter, J. Pádár, E. Tóth-Kádár, Á. Cziráki, P. Sóki, L. Pogány, I. Bakonyi, Electrochim. Acta 52, 3813 (2007)CrossRefGoogle Scholar
  45. 45.
    P. Villars, L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (American Society of Metals, Metals Park, Ohio, 1985)Google Scholar
  46. 46.
    J. Taylor, J. Inst. Met. 77, 585 (1950)Google Scholar
  47. 47.
    J. Bandyopadhyay, K.P. Gupta, Cryogenics 17, 345 (1977)CrossRefGoogle Scholar
  48. 48.
    J.G. Wright, J. Goddard, Phil. Mag. 11, 485 (1965)CrossRefADSGoogle Scholar
  49. 49.
    B.D. Cullity, Elements of X-ray Diffraction, 2nd edn (Addison-Wesley Publishing Company, London, 1978)Google Scholar
  50. 50.
    J. Smit, Physica 21, 877 (1955)CrossRefADSGoogle Scholar
  51. 51.
    M. Inagaki, M. Suzuki, Y. Iwama, U. Mizutani, Jap. J. Appl. Ph. 25, 1514 (1986)CrossRefADSGoogle Scholar
  52. 52.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986)Google Scholar
  53. 53.
    I. Bakonyi, E. Simon, B.G. Tóth, L. Péter, L.F. Kiss, Phys. Rev. B 79, 174421 (2009)CrossRefADSGoogle Scholar
  54. 54.
    The room-temperature resistivity of fcc-Co was estimated in reference [53] on the basis of the high-temperature resisitivity data reported for fcc-Co and hcp-Co by M.J. Laubitz, T. Matsumura, Can. J. Phys. 51, 1247 (1973)ADSGoogle Scholar
  55. 55.
    J.M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 1960), Chap. VIMATHGoogle Scholar
  56. 56.
    I. Bakonyi, E. Tóth-Kádár, J. Tóth, Á. Cziráki, B. Fogarassy, in: Nanophase Materials, edited by G.C. Hadjipanayis, R.W. Siegel, NATO ASI Series E (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994), Vol. 260, p. 423Google Scholar
  57. 57.
    I. Bakonyi, E. Tóth-Kádár, L. Pogány, Á. Cziráki, I. Geröcs, K. Varga-Josepovits, B. Arnold, K. Wetzig, Surf. Coat. Technol. 78, 124 (1996)CrossRefGoogle Scholar
  58. 58.
    E. Tóth-Kádár, I. Bakonyi, L. Pogány, Á. Cziráki, Surf. Coat. Technol. 88, 57 (1997)CrossRefGoogle Scholar
  59. 59.
    I. Bakonyi, E. Tóth-Kádár, J. Tóth, T. Tarnóczi, á. Cziráki, in: Processing and Properties of Nanocrystalline Materials, edited by C. Suryanarayana, J. Singh, F.H. Froes (The Minerals, Metals & Materials Society, Warrendale, Pa., USA, 1996), p. 465Google Scholar
  60. 60.
    I. Bakonyi, E. Tóth-Kádár, J. Tóth, L.F. Kiss, L. Pogány, Á. Cziráki, C. Ulhaq-Bouillet, V. Pierron-Bohnes, A. Dinia, B. Arnold, K. Wetzig, Europhys. Lett. 58, 408 (2002)CrossRefADSGoogle Scholar
  61. 61.
    R.W. Siegel, Ann. Rev. Mater. Sci. 21, 559 (1991)CrossRefADSGoogle Scholar
  62. 62.
    T.R. McGuire, W.D. Grobman, D.E. Eastman, AIP Conf. Proc. 18, Pt. 2, 903 (1973)ADSGoogle Scholar
  63. 63.
    G.K. White, S.B. Woods, Phil. Trans. Roy. Soc. A 251, 273 (1959)CrossRefADSGoogle Scholar
  64. 64.
    M.J. Laubitz, T. Matsumura, P.J. Kelly, Can. J. Phys. 54, 92 (1976)ADSGoogle Scholar
  65. 65.
    U. Mizutani, Introduction to the Electron Theory of Metals (Cambridge University Press, Cambridge, 2001)CrossRefGoogle Scholar
  66. 66.
    R. Caudron, J.J. Meunier, P. Costa, Solid State Commun. 14, 975 (1974)CrossRefADSGoogle Scholar
  67. 67.
    T.R. McGuire, AIP Conf. Proc. 24, 435 (1975)CrossRefADSGoogle Scholar
  68. 68.
    S.U. Jen, T.P. Chen, S.A. Chang, J. Appl. Phys. 70, 5831 (1991)CrossRefADSGoogle Scholar
  69. 69.
    J.W.F. Dorleijn, A.R. Miedema, J. Phys. F: Metal Phys. 5, 487 (1975)CrossRefADSGoogle Scholar
  70. 70.
    O. Jaoul, I.A. Campbell, A. Fert, J. Magn. Magn. Mater. 5, 23 (1977)CrossRefADSGoogle Scholar
  71. 71.
    T. Farrell, D. Greig, J. Phys. C (Proc. Phys. Soc.) 1, 1359 (1968)ADSGoogle Scholar
  72. 72.
    P. Muth, V. Christoph, J. Phys. F: Metal Phys. 11, 2119 (1981)CrossRefADSGoogle Scholar
  73. 73.
    J.W.F. Dorleijn, A.R. Miedema, J. Phys. F: Metal Phys. 5, 1543 (1975)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • B. G. Tóth
    • 1
  • L. Péter
    • 1
  • Á. Révész
    • 2
  • J. Pádár
    • 1
  • I. Bakonyi
    • 1
  1. 1.Research Institute for Solid State Physics and OpticsHungarian Academy of SciencesBudapestHungary
  2. 2.Department of Materials PhysicsEötvös UniversityBudapestHungary

Personalised recommendations