The European Physical Journal B

, Volume 74, Issue 4, pp 467–474 | Cite as

Transition from antiferromagnetic interlayer ordering to superparamagnetic state in Fe/Cr nanostructures by varying Fe thickness

  • V. V. Ustinov
  • M. A. Milyaev
  • L. N. Romashev
  • A. V. Korolev
  • V. A. Tsurin
  • N. S. Yartseva
  • S. V. Yartsev
  • J. C. ParlebasEmail author
Solid State and Materials


Transition from antiferromagnetic exchange coupling of the Fe layers to superparamagnetic state of the Fe/Cr nanostructures is studied experimentally and theoretically. The experimental study are performed by means of magnetoresistance and magnetization measurements as well as Mössbauer spectroscopy for the nanostructures with Fe layers thicknesses from 1.4 Å up to 16 Å alternating by 10 Å of Cr layers. It is shown that Fe layers in the nanostructures with thicknesses less than 2 Å are not continuous but consist of separate ferromagnetic clusters. Such cluster-layered nanostructures exhibit Langevin paramagnetism of the superparamagnetic clusters and the Kondo-like behavior of the resistance. For the considered nanostructures, a modeling of Fe and Cr atoms random deposition for the interface layers and self-consistent calculations of the magnetic moments distribution in Periodic Anderson model are carried out. It is shown that, for nanostructures with extremely thin Fe layers, the Fe clusters with lateral size in the range of 11 to 20 Å are self-organized. Calculations of magnetic moments distribution result in histograms which coincide with the hyperfine field distributions obtained by Mössbauer spectroscopy.


Average Magnetic Moment Statistical Histogram Periodic Anderson Model Magnetic Moment Distribution Cluster Magnetic Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Heinrich, J.F. Cochran, T. Monchesky, R. Urban, Phys. Rev. B 59, 14520 (1999)CrossRefADSGoogle Scholar
  2. 2.
    H. Hasegawa, J. Phys.: Condens. Matter 4, 169 (1992)CrossRefADSGoogle Scholar
  3. 3.
    D.T. Pierce, J. Unguris, R.J. Celotta, M.D. Stiles, J. Magn. Magn. Mat. 200, 290 (1999)CrossRefADSGoogle Scholar
  4. 4.
    Y.J. Choi, I.C. Jeong, J.Y. Park, S.-J. Kahng, J. Lee, Y. Kuk, Phys. Rev. B 59, 10918 (1999)CrossRefADSGoogle Scholar
  5. 5.
    A. Davies, J.A. Stroscio, D.T. Pierce, R.J. Celotta, Phys. Rev. Lett. 76, 4175 (1996)CrossRefADSGoogle Scholar
  6. 6.
    K. Mibu, M. Almokhtar, S. Tanaka, A. Nakanishi, T. Kobayashi, T. Shinjo, Phys. Rev. Lett. 84, 2243 (2000)CrossRefADSGoogle Scholar
  7. 7.
    M. Almokhtar, K. Mibu, T. Shinjo, Phys. Rev. B 66, 134401 (2002)CrossRefADSGoogle Scholar
  8. 8.
    V.V. Ustinov, V.A. Tsurin, L.N. Romashev, V.V. Ovchinnikov, Tech. Phys. Lett. 25, 88 (1999)CrossRefGoogle Scholar
  9. 9.
    I. Vincze, I.A. Campbell, J. Phys. F: Metal Phys. 3, 647 (1973)CrossRefADSGoogle Scholar
  10. 10.
    V.V. Ustinov, L.N. Romashev, M.A. Milayev, A.V. Korolev, T.P. Krinitsina, A.M. Burkhanov, J. Magn. Magn. Mater. 300, 148 (2005)CrossRefADSGoogle Scholar
  11. 11.
    V.V. Ustinov, L.N. Romashev, M.A. Milyaev, T.P. Krinitsina, A.M. Burkhanov, Advances in Science and Technology 52, 75 (2006)CrossRefGoogle Scholar
  12. 12.
    V.A. Tsurin, L.N. Romashev, V.V. Ustinov, A.P. Tankeev, V.V. Ovchinnikov, Technical Physics Letters 35, 133 (2009)CrossRefADSGoogle Scholar
  13. 13.
    N.S. Yartseva, S.V. Yartsev, C. Demangeat, V.M. Uzdin, J. Magn. Magn. Mater. 320, 292 (2008)CrossRefADSGoogle Scholar
  14. 14.
    A.J. Freeman, R. Wu, J. Magn. Magn. Mater. 100, 497 (1991)CrossRefADSGoogle Scholar
  15. 15.
    S.M. Dubiel, Condensed Matter: Materials Science, > cond-mat > arXiv:0812.0671 (2008)Google Scholar
  16. 16.
    R. Schad, P. Belien, G. Verbanck, K. Temst, H. Fischer, S. Lefebvre, M. Bessiere, D. Bahr, J. Falta, J. Dekoster, L. Langouche, V.V. Moshchalkov, Y. Bruynseraede, J. Magn. Magn. Mater. 198, 104 (1999)CrossRefADSGoogle Scholar
  17. 17.
    N.V. Bagrets, E.A. Kravtsov, M.A. Milyaev, L.N. Romashev, A.V. Semerikov, V.V. Ustinov, Phys. Met. Metallography 96, 88 (2003)Google Scholar
  18. 18.
    N.S. Yartseva, S.V. Yartsev, V.M. Uzdin, C. Demangeat, Comp. Mat. Sci. 24, 199 (2002)CrossRefGoogle Scholar
  19. 19.
    V.M. Uzdin, N.S. Yartseva, Comp. Mat. Sci. 10, 211 (1998)CrossRefGoogle Scholar
  20. 20.
    N.S. Yartseva, S.V. Yartsev, C. Demangeat, V.M. Uzdin, J.C. Parlebas, J. Mol. Structure: THEOCHEM 777, 29 (2006)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • V. V. Ustinov
    • 1
  • M. A. Milyaev
    • 1
  • L. N. Romashev
    • 1
  • A. V. Korolev
    • 1
  • V. A. Tsurin
    • 1
  • N. S. Yartseva
    • 1
  • S. V. Yartsev
    • 2
  • J. C. Parlebas
    • 3
    Email author
  1. 1.Institute of Metal Physics UD of RASEkaterinburgRussia
  2. 2.ZAO NPO “Spektr”, 14 Zapadnaya promzona, BerezovskiySverdlovskaya oblast’Russia
  3. 3.Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-UDSStrasbourg Cedex 2France

Personalised recommendations