Skip to main content
Log in

CO2 activation on single crystal based ceria and magnesia/ceria model catalysts

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Novel multifunctional ceria based materials may show an improved performance in catalytic processes involving CO2 activation and reforming of hydrocarbons. Towards a more detailed understanding of the underlying surface chemistry, we have investigated CO2 activation on single crystal based ceria and magnesia/ceria model catalysts. All model systems are prepared starting from well-ordered and fully stoichiometric CeO2(111) films on a Cu(111) substrate. Samples with different structure, oxidation state and compositions are generated, including CeO2-x/Cu(111) (reduced), MgO/CeO2-x/Cu(111) (reduced), mixed MgO-CeO2/Cu(111) (stoichiometric), and mixed MgO-CeO2-x/Cu(111) (reduced). The morphology of the model surfaces is characterized by means of scanning tunneling microscopy (STM), whereas the electronic structure and reactivity is probed by X-ray photoelectron spectroscopy (XPS). The experimental approach allows us to compare the reactivity of samples containing different types of Ce3+, Ce4+, and Mg2+ ions towards CO2 at a sample temperature of 300 K. Briefly, we detect the formation of two CO2-derived species, namely carbonate (CO3 2-) and carboxylate (CO2 -) groups, on the surfaces of all investigated samples after exposure to CO2 at 300 K. In parallel to formation of the carbonate species, slow partial reoxidation of reduced CeO2-x/Cu(111) occurs at large doses of CO2. The reoxidation of the reduced ceria is largely suppressed on MgO-containing samples. The tendency for reoxidation of Ce3+ to Ce4+ by CO2 decreases with increasing degree of intermixing between MgO and CeO2-x. Additionally, we have studied the stability of the formed carbonate species as a function of annealing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.H. Hu, E. Ruckenstein, Adv. Catal. 48, 297 (2004)

    Article  Google Scholar 

  2. M.C.J. Bradford, M.A. Vannice, Catal. Rev. Sci. Eng. 41, 1 (1999)

    Article  Google Scholar 

  3. T.A. Land, T. Michely, R.J. Behm, J.C. Hemminger, G. Comsa, J. Chem. Phys. 97, 6774 (1992)

    Article  ADS  Google Scholar 

  4. V. Johanek, A.B.D.L. Ree, J.C. Hemminger, J. Phys. Chem. C 113, 4441 (2009)

    Article  Google Scholar 

  5. T.A. Land, T. Michely, R.J. Behm, J.C. Hemminger, G. Comsa, Surf. Sci. 264, 261 (1992)

    Article  ADS  Google Scholar 

  6. D.E. Starr, E.M. Pazhetnov, A.I. Stadnichenko, A.I. Boronin, S.K. Shaikhutdinov, Surf. Sci. 600, 2688 (2006)

    Article  ADS  Google Scholar 

  7. A. Trovarelli, Catalysis by Ceria and Related Metals (Imperial College Press, London, 2002)

    Book  Google Scholar 

  8. X. Wang, R.J. Gorte, Appl. Catal. A: General 224, 209 (2002)

    Article  Google Scholar 

  9. M.Yu. Smirnov, G.W. Graham, Catal. Letters 72, 39 (2001)

    Article  Google Scholar 

  10. G.S. Zafiris, R.J. Gorte, J. Catal. 139, 561 (1993)

    Article  Google Scholar 

  11. C. Li, Y. Sakata, T. Arai, K. Domen, K. Maruya, T. Onishi, J. Chem. Soc. Faraday Trans. I 85, 929 (1989)

    Article  Google Scholar 

  12. C. Li, Y. Sakata, T. Arai, K. Domen, K. Maruya, T. Onishi, J. Chem. Soc. Faraday Trans. I 85, 1451 (1989)

    Article  Google Scholar 

  13. L.G. Appel, J.G. Eon, M. Schmal, Catal. Lett. 56, 199 (1998)

    Article  Google Scholar 

  14. D. Ochs, M. Brause, B. Braun, W. Maus-Friedrichs, V. Kempter, Surf. Sci. 397, 101 (1998)

    Article  ADS  Google Scholar 

  15. S. Bernal, G. Blanco, J.M. Gatica, L. Larese, H. Vidal, J. Catal. 200, 411 (2001)

    Article  Google Scholar 

  16. O. Demoulin, M. Navez, J.-L. Mugabo, P. Ruiz, Appl. Catal. B: Environmental 70, 284 (2007)

    Article  Google Scholar 

  17. V. Matolín, J. Libra, I. Matolínová, V. Nehasil, L. Sedláček, F. Šutara, Appl. Surf. Sci. 254, 153 (2007)

    Article  ADS  Google Scholar 

  18. F. Šutara, M. Cabala, L. Sedláček, T. Skála, M. Škoda, V. Matolín, K.C. Prince, V. Cháb, Thin Solid Films 516, 6120 (2008)

    Article  ADS  Google Scholar 

  19. V. Matolín, J. Libra, M. Škoda, N. Tsud, K.C. Prince, T. Skála, Surf. Sci. 603, 1087 (2009)

    Article  ADS  Google Scholar 

  20. D.R. Mullins, M.D. Robins, J. Zhou, Surf. Sci. 600, 1547 (2006)

    Article  ADS  Google Scholar 

  21. S. Fabris, G. Vicario, G. Balducci, S. de Gironcoli, S. Baroni, J. Phys. Chem. B 109, 22860 (2005)

    Article  Google Scholar 

  22. M. Engelhard, S. Azard, C.H.F. Peden, S. Thevuthasan, Surf. Sci. Spectra 11, 73 (2004)

    Article  ADS  Google Scholar 

  23. Y. Bouvier, B. Mutel, J. Grimblot, Surf. Coat. Technol. 180–181, 169 (2004)

    Article  Google Scholar 

  24. S. Ardizzone, C.L. Bianchi, M. Fadoni, B. Vercelli, Appl. Surf. Sci. 119, 253 (1997)

    Article  ADS  Google Scholar 

  25. V. Fournier, P. Marcus, I. Olefjord, Surf. Interface Anal. 34, 494 (2002)

    Article  Google Scholar 

  26. T. Staudt, A. Desikusumastuti, M. Happel, E. Vesselli, S. Gardonio, S. Lizzit, A. Baraldi, F. Rohr, J. Libuda, J. Phys. Chem. C 112, 9835 (2008)

    Article  Google Scholar 

  27. S. Campbell, P. Hollins, E. McCash, M.W. Roberts, J. El. Spec. Related Phenomena 39, 145 (1986)

    Article  Google Scholar 

  28. J.P. Holgado, G. Munuera, J.P. Espinós, A.R. Gonzáles-Elipe, Appl. Surf. Sci. 158, 164 (2000)

    Article  ADS  Google Scholar 

  29. C. Di Valentin, R. Ferullo, R. Binda, G. Pacchioni, Surf. Sci. 600, 1147 (2006)

    Article  ADS  Google Scholar 

  30. T. Staudt, Y. Lykhach, L. Hammer, A. Schneider, V. Matolin, J. Libuda, Surf. Sci. 603, 3382 (2009)

    Article  Google Scholar 

  31. T. Skala, F. Sutara, M. Skoda, K.C. Prince, M. Matolin, J. Phys. Cond. Mat. 21, 5 (2009)

    Article  Google Scholar 

  32. D.R. Mullins, S.H. Overbury, D.R. Huntley, Surf. Sci. 409, 307 (1998)

    Article  ADS  Google Scholar 

  33. S.D. Senanayake, D.R. Mullins, J. Phys. Chem. C 112, 9744 (2008)

    Article  Google Scholar 

  34. M.B. Jensen, L.G.M. Pettersson, O. Swang, U. Olsbye, J. Phys. Chem. B 109, 16774 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Libuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lykhach, Y., Staudt, T., Streber, R. et al. CO2 activation on single crystal based ceria and magnesia/ceria model catalysts. Eur. Phys. J. B 75, 89–100 (2010). https://doi.org/10.1140/epjb/e2010-00110-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00110-x

Keywords

Navigation