The European Physical Journal B

, Volume 74, Issue 2, pp 177–193 | Cite as

Noise-induced synchronization in bidirectionally coupled type-I neurons

  • N. Malik
  • B. Ashok
  • J. BalakrishnanEmail author
Statistical and Nonlinear Physics


We present here some studies on noise-induced order and synchronous firing in a system of bidirectionally coupled generic type-I neurons. We find that transitions from unsynchronized to completely synchronized states occur beyond a critical value of noise strength that has a clear functional dependence on neuronal coupling strength and input values. For an inhibitory-excitatory (IE) synaptic coupling, the approach to a partially synchronized state is shown to vary qualitatively depending on whether the input is less or more than a critical value. We find that introduction of noise can cause a delay in the bifurcation of the firing pattern of the excitatory neuron for IE coupling.


Lyapunov Exponent Coupling Strength Instantaneous Frequency Excitatory Neuron Large Lyapunov Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.F. Huxley, A.L. Hodgkin, J. Physiol. (London) 117, 500 (1952) Google Scholar
  2. H.C. Tuckwell, Stochastic Processes in Neurosciences (SIAM, Philadelphia, 1989) Google Scholar
  3. L. Morris, H. Lecar, Biophys. J. 35, 193 (1981) Google Scholar
  4. D. Hansel, H. Sompolinsky, Phys. Rev. Lett. 68, 718 (1992) Google Scholar
  5. W. Wang, G. Perez, H.A. Cerdeira, Phys. Rev. E 47, 2893 (1993) Google Scholar
  6. F.E.-N. Hassan, M. Paulsamy, F.F. Fernando, H.A. Cerdeira, Chaos 19, 013103 (2009) Google Scholar
  7. J.R. Rinzel, G.B. Ermentrout, in Methods of Neuronal Modeling, edited by C. Koch, I. Segev (MIT Press, Cambridge, MA, USA, 1989), pp. 135–169. Google Scholar
  8. C.V. Vreeswijk, L. Abbott, G.B. Ermentrout, J. Comp. Neuroscience 1, 313 (1994) Google Scholar
  9. D. Hansel, G. Mato, C. Meunier, Neural Comput. 7, 307 (1995) Google Scholar
  10. B. Ermentrout, Neural Comput. 8, 979 (1996) Google Scholar
  11. C. Börgers, N. Kopell, Neural Comput. 15, 509 (2003) Google Scholar
  12. C. Börgers, N. Kopell, Neural Comput. 17, 557 (2005) Google Scholar
  13. E. Izhikevich, IEEE Trans. Neural Networks 10, 499 (1999) Google Scholar
  14. W. Lim, S.-Y. Kim, J. Korean Physical Soc. 50, 219 (2007) Google Scholar
  15. N. Malik, B. Ashok, J. Balakrishnan, Pramana- J. Phys. 74, 189 (2010). Google Scholar
  16. C. Koch, Biophysics of Computation: Information processing in single neurons (Oxford University Press, NY, 1999) Google Scholar
  17. B. Gutkin, T. Hely, J. Jost, Neurocomputing 58, 753 (2004) Google Scholar
  18. E. Kandel, J.H. Schwartz, T.M. Jessell, Principles of neural science (McGraw-Hill, New York, 2000) Google Scholar
  19. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001) Google Scholar
  20. L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 64, 821 (1990) Google Scholar
  21. C. Zhou, J. Kurths, Phys. Rev. Lett. 88, 230602 (2002) Google Scholar
  22. V.S. Anishchenko, V.V. Astakhov, A.B. Neiman, T.E. Vadisova, L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems (Springer-Verlag, Berlin, 2002) Google Scholar
  23. R. Haberman, SIAM J. Appl. Math. 37, 69 (1979) Google Scholar
  24. C. van den Broeck, P. Mandel, Phys. Lett. A 122, 36 (1987) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Advanced Centre for Research in High Energy Materials (ACRHEM), University of Hyderabad, Central University POHyderabad -India
  3. 3.School of Physics, University of Hyderabad, Central University POHyderabad -India

Personalised recommendations