Skip to main content
Log in

Higher-order phase transitions on financial markets

  • Focus Section on Applications of Physics in Financial Analysis
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Statistical and thermodynamic properties of the anomalous multifractal structure of random interevent (or intertransaction) times were thoroughly studied by using the extended continuous-time random walk (CTRW) formalism of Montroll, Weiss, Scher, and Lax. Although this formalism is quite general (and can be applied to any interhuman communication with nontrivial priority), we consider it in the context of a financial market where heterogeneous agent activities can occur within a wide spectrum of time scales. As the main general consequence, we found (by additionally using the Saddle-Point Approximation) the scaling or power-dependent form of the partition function, Z(q’). It diverges for any negative scaling powers q’ (which justifies the name anomalous) while for positive ones it shows the scaling with the general exponent τ(q’). This exponent is the nonanalytic (singular) or noninteger power of q’, which is one of the pilar of higher-order phase transitions. In definition of the partition function we used the pausing-time distribution (PTD) as the central one, which takes the form of convolution (or superstatistics used, e.g. for describing turbulence as well as the financial market). Its integral kernel is given by the stretched exponential distribution (often used in disordered systems). This kernel extends both the exponential distribution assumed in the original version of the CTRW formalism (for description of the transient photocurrent measured in amorphous glassy material) as well as the Gaussian one sometimes used in this context (e.g. for diffusion of hydrogen in amorphous metals or for aging effects in glasses). Our most important finding is the third- and higher-order phase transitions, which can be roughly interpreted as transitions between the phase where high frequency trading is most visible and the phase defined by low frequency trading. The specific order of the phase transition directly depends upon the shape exponent \(\alpha \) defining the stretched exponential integral kernel. On this basis a simple practical hint for investors was formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Perelló, J. Masoliver, A. Kasprzak, R. Kutner, Phys. Rev. E 78, 036108 (2008)

    Article  ADS  Google Scholar 

  2. W.A. Fuller, Introduction to Statistical Time Series (J. Wiley, Ames Iowa, 1976)

  3. M.B. Pristley, Non-linear and Non-Stationary Time Series Analysis (Acad. Press, London, 1988)

  4. B. Torrésani, Special Issue on Wavelet and Time-Frequency Analysis, J. Math. Phys. 39 (1998)

  5. J.C. Sprott, Chaos and Time-Series Analysis (Acad. Press, London, 2003)

  6. Handbook of Time Series Analysis: Recent Theoretical Developments and Applications, edited by B. Schelter, M. Winterhalder, J. Timmer (Wiley-VCH, Weinheim, 2006)

  7. C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, Phys. Rev. E 49, (1994) 1685

    Google Scholar 

  8. J.W. Kantelhardt, E. Koscielny-Bunde, H.H.A Rego, S. Havlin, A. Bunde, Physica A 295, 441 (2001)

    Article  MATH  ADS  Google Scholar 

  9. J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanley, Physica A 316, 82 (2002)

    Article  ADS  Google Scholar 

  10. A. Carbone, G. Castelli, H.E. Stanley, Phys. Rev. E 69, 026105 (2004)

    Article  ADS  Google Scholar 

  11. E. Alessio, A. Carbone, G. Cstelli, V. Frappietro, Eur. Phys. J. B 27, 197 (2002)

    ADS  Google Scholar 

  12. D. Grech, Z. Mazur, Acta Phys. Pol. B 36, 2403 (2005)

    ADS  Google Scholar 

  13. A.R. Bishop, G. Grüna, B. Nicolaenko, Physica D 23, 1 (1987)

    Google Scholar 

  14. A. Aharony, J. Feder, Physica D 38, 1 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  15. F. Schmitt, D. Schertzer, S. Lovejoy, Appl. Stochastic Models Data Anal. 15, 29 (1999)

    Article  MATH  Google Scholar 

  16. O. Pont, J.M.D. Delgado, A. Turiel, C.J. Pérez-Vincente, New J. Phys. (2008), in print

  17. J.F. Muzy, J. Delour, E. Bacry, Eur. Phys. J. B 17, 537 (2000)

    Article  ADS  Google Scholar 

  18. R.N. Mantegna, Physica A 179, 232 (1991)

    Article  ADS  Google Scholar 

  19. D. Sornette, Critical Phenomena in Natural Sciences. Chaos, Fractals, Selforganization and Disorder: Concepts and Tools (Springer-Verlag, Berlin, 2000)

  20. F. Mainardi, M. Raberto, R. Gorenflo, E. Scalas, Physica A 287, 468 (2000)

    Article  ADS  Google Scholar 

  21. E.W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  22. H. Scher, M. Lax, Phys. Rev. B 7, 4491 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  23. H. Scher, E.W. Montroll, Phys. Rev. B 12, 2455 (1975)

    Article  ADS  Google Scholar 

  24. G. Pfister, H. Scher, Phys. Rev. B 15, 2062 (1977)

    Article  ADS  Google Scholar 

  25. G. Pfister, H. Scher, Adv. Phys. 27, 747 (1978)

    Article  ADS  Google Scholar 

  26. E.M. Montroll, B.J. West, in Fluctuation Phenomena, SSM, Vol. VII, edited by E.W. Montroll, J.L. Lebowitz (North-Holland, Amsterdam, 1979), p. 61

  27. E.M. Montroll, M.F. Shlesinger, in Nonequilibrium Phenomena II, From Stochastics to Hydrodynamics, SSM, Vol. XI, edited by J.L. Lebowitz, E.M. Montroll (North-Holland, Amsterdam, 1984), p. 1

  28. G.W. Weiss, A Primer of Random Walkology, in Fractals in Science, edited by A. Bunde, S. Havlin, (Springer-Verlag, Berlin, 1995), Chap. 5, p. 119

  29. E.J. Moore, J. Phys. C: Proc. Phys. Soc. London 7, 339 (1974)

    ADS  Google Scholar 

  30. E. Scalas, R. Gorenflo, F. Mainardi, Phys. Rev. E 69, 011107 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  31. J. Masoliver, M. Montero, J. Perelló, G.H. Weiss, J. Economic Behavior Org. 61, (2006) 577

    Google Scholar 

  32. R. Kutner, Chem. Phys. 284, 481 (2002)

    Article  ADS  Google Scholar 

  33. R. Kutner, F. Switała, Eur. Phys. J. B 33, 495 (2003)

    Article  ADS  Google Scholar 

  34. R. Kutner, F. Switała, Quant. Finance 3, 201 (2003)

    Article  MathSciNet  Google Scholar 

  35. K.W. Kehr, R. Kutner, K. Binder, Phys. Rev. B 23, 4931 (1981)

    Article  ADS  Google Scholar 

  36. J.W. Haus, K.W. Kehr, Phys. Rep. 150, 263 (1987)

    Article  ADS  Google Scholar 

  37. G. Zumofen, J. Klafter, A. Blumen, Models for Anomalous Diffusion, in Disorder Effects on Relaxational processes. Glasses, Polymers, Proteins, edited by R. Richert, A. Blumen (Springer, Berlin, 1994), Chap. 8, p. 251

  38. T. Wichmann, K.W. Kehr, J. Phys.: Condens. Matter 7, (1995) 717

    Google Scholar 

  39. J. Klafter, G. Zumofen, M.F. Shlesinger, in Lévy Flights and Related Topics in Physics, LNP, 450, edited by M.F. Shlesinger, G.H. Zaslavsky, U. Frisch (Springer, Berlin, 1995), p. 196

  40. C. Monthus, J.-P. Bouchaud, J. Phys. A: Math. Gen. 29, 3847 (1996)

    Article  MATH  ADS  Google Scholar 

  41. G. Zumofen, J. Klafter, M.F. Shlesinger, Lévy Flights and Lévy Walks Revisited, in Anomalous Diffusion. From Basics to Applications, LNP, 519, edited by R. Kutner, A. Pękalski, K. Sznajd-Weron (Springer, Berlin, 1999) p. 15

  42. R. Kutner, M. Regulski, Physica A 264, 107 (1999)

    Article  Google Scholar 

  43. R. Hilfer, Fractional Time Evolution, in Applications of Fractional Calculus in Physics, edited by R. Hilfer (World Scient., Singapore, 2000), p. 87

  44. D. ben-Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge Univ. Press, Cambridge, 2000)

  45. M. Kozłowska, R. Kutner, Physica A 357, 282 (2005)

    Article  ADS  Google Scholar 

  46. B. Mandelbrot, R.L. Hudson, The (Mis)Behavior of Markets. A Fractal View of Risk, Ruin, and Reward (Basic Books, New York, 2004)

  47. L. Li, Y. Meurice, Phys. Rev. D 73, 036006-1 (2006)

    Article  ADS  Google Scholar 

  48. Th.H. Halsey, M.H. Jensen, L.P. Kadanoff. I. Procaccia, B.I. Shraiman, Phys. Rev. A 33, 1141 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. C. Beck, F. Schlögl, Thermodynamics of chaotic systems. An introduction (Cambridge Univ. Press, Cambridge, 1995)

  50. L. Harris, J. Financ. Quant. Anal. 22, 127 (1987)

    Article  Google Scholar 

  51. W.M. Fong, W.F. Lab-sane, Quant. Finance 3, 184 (2003)

    Article  MathSciNet  Google Scholar 

  52. B. Castaing, Y. Gagne, E. Hopfinger, Physica D 46, 177 (1990)

    Article  MATH  ADS  Google Scholar 

  53. B. Chabaud, A. Naert, J. Peinke, F. Chillà, B. Castaing, B. Hebral, Phys. Rev. Lett. 73, 3227 (1994)

    Article  ADS  Google Scholar 

  54. C. Tsallis, Braz. J. Phys. 39, 337 (2009)

    Article  Google Scholar 

  55. C. Beck, E.G.D. Cohen, Physica A 322, 267 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. C. Beck, E.G.D. Cohen, S. Rizzo, Europhysics News 36/6, 189 (2005)

    Google Scholar 

  57. J.-P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  58. J.P. Bouchaud, in Lévy Flights and Related Topics in Physics, LNP, 450, edited by M.F. Shlesinger, G.H. Zaslavsky, U. Frisch (Springer, Berlin, 1995), p. 239

  59. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  60. R.N. Mantegna, H.E. Stanley, An Introduction to Econophysics, Correlations and Complexity in Finance (Cambridge Univ. Press, Cambridge, UK, 2000)

  61. W. Paul, J. Baschnagel, Stochastic Processes, From Physics to Finance (Springer, Berlin 1999)

  62. Th. Niemeijer, J.M.J. van Leeuwen, in Phase Transitions and Critical Phenomena, edited by C. Domb, M.S. Green (Acad. Press, London, 1976), Vol. 6

  63. B.B. Mandelbrot, C.J.G. Evertsz, in Fractals and Disordered Systems, 2nd revised and enlarged edn., edited by A. Bunde, Sh. Havlin (Springer, Berlin, 1996)

  64. H.E. Stanley, Fractals and Multifractals: The Interplay of Physics and Geometry in Fractals and Disordered Systems, Second Revised and Enlarged Edition, edited by A. Bunde, Sh. Havlin (Springer, Berlin 1996).

  65. R. Badii, A. Politi, Complexity. Hierarchical structures and scaling in physics (Cambridge Univ. Press, Cambridge 1997)

  66. W.G. Hanan, J. Gough, D.M. Heffernan, Phys. Rev. E 63, 011109 (2000)

    Article  ADS  Google Scholar 

  67. N.F. Johnson, P. Jefferies, P.M. Hui, Financial Market Complexity (Oxford Univ. Press, Oxford, 2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kasprzak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasprzak, A., Kutner, R., Perelló, J. et al. Higher-order phase transitions on financial markets. Eur. Phys. J. B 76, 513–527 (2010). https://doi.org/10.1140/epjb/e2010-00064-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00064-y

Keywords

Navigation