Quantum chemical study of Co3+ spin states in LaCoO3

Abstract.

Ab initio quantum-chemical cluster calculations are performed for the perovskite LaCoO3. The main concern is to calculate the energy level ordering of different spin states of Co3+, which is an issue of great controversy for many years. The calculations performed for the trigonal lattice structure at T = 5 K and 300 K, with the structural data taken from experiment, display that the low-spin (LS, S = 0) ground state is separated from the first excited high-spin (HS, S = 2) state by a gap <100 meV, while the intermediate-spin (IS, S = 1) state is located at much higher energy ≈0.5 eV. We suggest that the local lattice relaxation around the Co3+ ion excited to the HS state and the spin-orbit coupling reduce the spin gap to a value ~10 meV. Coupling of the IS state to the Jahn-Teller local lattice distortion is found to be rather strong and reduces its energy position to a value of 200 \(\div\) 300 meV. Details of the quantum-chemical cluster calculation procedure and the obtained results are extensively discussed and compared with those reported earlier by other authors.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J.B. Goodenough, J. Phys. Chem. Solids 6, 287 (1958)

    Article  ADS  Google Scholar 

  2. 2.

    P.M. Raccah, J.B. Goodenough, Phys. Rev. 155, 932 (1967)

    Article  ADS  Google Scholar 

  3. 3.

    M.A. Senaris-Rodriguez, J.B. Goodenough, J. Solid State Chem. 116, 224 (1995)

    Article  ADS  Google Scholar 

  4. 4.

    R.R. Heikes, R.C. Miller, R. Mazelsky, Physica 30, 1600 (1964)

    Article  ADS  Google Scholar 

  5. 5.

    K. Asai, A. Yoneda, O. Yokokura, J.M. Tranquada, G. Shirane, K. Kohn, J. Phys. Soc. Jpn 67, 290 (1998)

    Article  ADS  Google Scholar 

  6. 6.

    M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  7. 7.

    G. Thornton, B.C. Tofield, A.W. Hewat, J. Solid State Chem. 61, 301 (1986)

    Article  ADS  Google Scholar 

  8. 8.

    T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, M. Takauo, Phys. Rev. B 55, 4257 (1997)

    Article  ADS  Google Scholar 

  9. 9.

    R.H. Potze, G.A. Sawatzky, M. Abbate, Phys. Rev. B 51, 11 501 (1995)

    Article  Google Scholar 

  10. 10.

    M.A. Korotin, S. Yu. Ezhov, I.V. Solovyev, V.I. Anisimov, D.I. Khomskii, G.A. Sawatzky, Phys. Rev. B 54, 5309 (1996)

    Article  ADS  Google Scholar 

  11. 11.

    M. Abbate, R. Potze, G.A. Sawatzky, A. Fujimori, Phys. Rev. B 49, 7210 (1994)

    Article  ADS  Google Scholar 

  12. 12.

    C. Zobel, M. Kriener, D. Bruns, J. Baier, M. Gruninger, T. Lorenz, P. Reutler, A. Revcolevschi, Phys. Rev. B 66, 020402(R) (2002), with Erratum in Phys. Rev. B 71, 019902(E) (2005)

    Article  ADS  Google Scholar 

  13. 13.

    T. Vogt, J.A. Hriljac, N.C. Hyatt, P. Woodward, Phys. Rev. B 67, 140401(R) (2003)

    Article  ADS  Google Scholar 

  14. 14.

    A. Ishikawa, J. Nohara, S. Sugai, Phys. Rev. Lett. 93, 136401 (2004)

    Article  ADS  Google Scholar 

  15. 15.

    D.P. Kozlenko, N.O. Golosova, Z. Jirak, L.S. Dubrovinsky, B.N. Savenko, M.G. Tucker, Y. Le Godec, V.P. Glazkov, Phys. Rev. B 75, 064422 (2007)

    Article  ADS  Google Scholar 

  16. 16.

    D. Phelan, D. Louca, S. Rosenkranz, S.-H. Lee, Y. Qiu, P.J. Chupas, R. Osborn, H. Zheng, J.F. Mitchell, J.R.D. Copley, J.L. Sarrao, Y. Moritomo, Phys. Rev. Lett. 96, 027201 (2006)

    Article  ADS  Google Scholar 

  17. 17.

    S. Noguchi, S. Kawamata, K. Okuda, H. Nojiri, M. Motokawa, Phys. Rev. B 66, 094404 (2002)

    Article  ADS  Google Scholar 

  18. 18.

    M.W. Haverkort, Z. Hu, J.C. Cezar, T. Burnus, H. Hartmann, M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N.B. Brookes, H.-H. Hsieh, H.-J. Lin, C.-T. Chen, L.H. Tjeng, Phys. Rev. Lett. 97, 176405 (2006)

    Article  ADS  Google Scholar 

  19. 19.

    A. Podlesnyak, S. Streule, J. Mesot, M. Medarde, E. Pomjakushina, K. Conder, A. Tanaka, M.W. Haverkort, D.I. Khomskii, Phys. Rev. Lett. 97, 247208 (2006)

    Article  ADS  Google Scholar 

  20. 20.

    Z. Ropka, R.J. Radwanski, Phys. Rev. B 67, 172401 (2003)

    Article  ADS  Google Scholar 

  21. 21.

    G. Maris, Y. Ren, V. Volotchaev, C. Zobel, T. Lorenz, T.T. Palstra, Phys. Rev. B 67, 224423 (2003)

    Article  ADS  Google Scholar 

  22. 22.

    N. Sundaram, Y. Jiang, I.E. Anderson, D.P. Belanger, C.H. Booth, F. Bridges, J.F. Mitchell, T. Proffen, H. Zheng, Phys. Rev. Lett. 102, 026401 (2009)

    Article  ADS  Google Scholar 

  23. 23.

    D. Louca, J.L. Sarrao, Phys. Rev. Lett. 91, 155501 (2003)

    Article  ADS  Google Scholar 

  24. 24.

    P.G. Radaelli, S.-W. Cheong, Phys. Rev. B 66, 094408 (2002)

    Article  ADS  Google Scholar 

  25. 25.

    A. Fujimori, F. Minami, Phys. Rev. B 30, 957 (1984)

    Article  ADS  Google Scholar 

  26. 26.

    M.W. Haverkort, Ph.D. thesis, University of Cologne Faculty of Mathematics, Natural Sciences Physics Department, 2005, e-print [arXiv:cond-mat/0505214]

  27. 27.

    G.J.M. Janssen, W.C. Nieuwpoort, Phys. Rev. B 38, 3449 (1988)

    Article  ADS  Google Scholar 

  28. 28.

    R.L. Martin, J. Chem. Phys. 98, 8691 (1993)

    Article  ADS  Google Scholar 

  29. 29.

    D. Muñoz, F. Illas, I. de P.R. Moreira, Phys. Rev. Lett. 84, 1579 (2000)

    Article  ADS  Google Scholar 

  30. 30.

    A. Klimkãns, S. Larsson, J. Chem. Phys. 115, 466 (2001)

    Article  ADS  Google Scholar 

  31. 31.

    L. Hozoi, A.H. de Vries, R. Broer, Phys. Rev. B 64, 165104 (2001)

    Article  ADS  Google Scholar 

  32. 32.

    C.J. Calzado, J.-P. Malrieu, Phys. Rev. B 63, 214520 (2001)

    Article  ADS  Google Scholar 

  33. 33.

    M.B. Lepetit, N. Suaud, A. Gelle, V. Robert, J. Chem. Phys. 118, 3966 (2003)

    Article  ADS  Google Scholar 

  34. 34.

    C.J. Calzado, C. de Graaf, E. Bordas, R. Caballol, J.-P. Malrieu, Phys. Rev. B 67, 132409 (2003)

    Article  ADS  Google Scholar 

  35. 35.

    E. Bordas, C. de Graaf, R. Caballol, C.J. Calzado, Phys. Rev. B 71, 045108 (2005)

    Article  ADS  Google Scholar 

  36. 36.

    A. Sadoc, C. de Graaf, R. Broer, Phys. Rev. B 75, 165116 (2007)

    Article  ADS  Google Scholar 

  37. 37.

    S. Landron, M.B. Lepetit, Phys. Rev. B 74, 184507 (2006)

    Article  ADS  Google Scholar 

  38. 38.

    L. Hozoi, U. Birkenheuer, H. Stoll, P. Fulde, J. New. Phys. 11, 023023 (2009)

    Article  Google Scholar 

  39. 39.

    P. Ravindran, P.A. Korzhavyi, H. Fjellvåg, A. Kjekshus, Phys. Rev. B 60, 16423 (1999)

    Article  ADS  Google Scholar 

  40. 40.

    T. Kyômen, Y. Asaka, M. Itoh, Phys. Rev. B 67, 144424 (2003)

    Article  ADS  Google Scholar 

  41. 41.

    T. Kyômen, Y. Asaka, M. Itoh, Phys. Rev. B 71, 024418 (2005)

    Article  ADS  Google Scholar 

  42. 42.

    S.K. Pandey, A. Kumar, S. Patil, V.R.R. Medicherla, R.S. Singh, K. Maiti, D. Prabhakaran, A.T. Boothroyd, A.V. Pimpale, Phys. Rev. B 77, 045123 (2008)

    Article  ADS  Google Scholar 

  43. 43.

    H.-J. Werner, P.J. Knowles, J. Chem. Phys. 82, 5053 (1985)

    Article  ADS  Google Scholar 

  44. 44.

    P.J. Knowles, H.-J. Werner, Chem. Phys. Lett. 115, 259 (1985)

    Article  ADS  Google Scholar 

  45. 45.

    H.-J. Werner, P.J. Knowles, J. Chem. Phys. 89, 5803 (1988)

    Article  ADS  Google Scholar 

  46. 46.

    P.J. Knowles, H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988)

    Article  ADS  Google Scholar 

  47. 47.

    S.R. Langhoff, E.R. Davidson, Int. J. Quantum Chem. 8, 61 (1974)

    Article  Google Scholar 

  48. 49.

    M. Kriener, M. Braden, H. Kierspel, D. Senff, O. Zabara, C. Zobel, T. Lorenz, Phys. Rev. B 79, 224104 (2009)

    Article  ADS  Google Scholar 

  49. 50.

    M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 86, 866 (1987)

    Article  ADS  Google Scholar 

  50. 51.

    M. Kaupp, P.V.R. Schleyer, H. Stoll, H. Preuss, J. Chem. Phys. 94, 1360 (1991)

    Article  ADS  Google Scholar 

  51. 52.

    Jr. T.H. Dunning, J. Chem. Phys. 90, 1007 (1989)

    Article  ADS  Google Scholar 

  52. 53.

    M. Dolg, H. Stoll, A. Savin, H. Preuss, Theor. Chim. Acta 75, 173 (1989)

    Article  Google Scholar 

  53. 54.

    G. Schaftenaar, J.H. Nordik, J. Comput.-Aided Mol. Design 14, 123 (2000)

    Article  Google Scholar 

  54. 55.

    S.K. Pandey, A. Kumar, S. Patil, V.R.R. Medicherla, R.S. Singh, K. Maiti, D. Prabhakaran, A.T. Boothroyd, A.V. Pimpale, Phys. Rev. B 77, 045123 (2008)

    Article  ADS  Google Scholar 

  55. 56.

    S.W. Biernacki, B. Clerjaud, Phys. Rev. B 72, 024406 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Siurakshina.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Siurakshina, L., Paulus, B., Yushankhai, V. et al. Quantum chemical study of Co3+ spin states in LaCoO3 . Eur. Phys. J. B 74, 53–61 (2010). https://doi.org/10.1140/epjb/e2010-00063-0

Download citation

Keywords

  • Spin State
  • Quantum Chemical Study
  • Local Lattice Distortion
  • Spin State Transition
  • Orbital Arrangement