Skip to main content
Log in

Analysis of the electronic structure of ultrathin NiO/Ag(100) films

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Thin films of nickel oxide on a silver substrate have been extensively studied both experimentally and theoretically. In this paper we present band structure calculations of one, two, three and five layer NiO/Ag(100) systems using a GGA+U density functional method and study the approach of the system towards the bulk situation. We find that the interfacial layer is metallised and that even for a five-layer system, the substrate still affects the properties of the outermost and central layers, suggesting that these layers have not yet reached convergence towards bulk properties. This may affect some of the more sensitive properties of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Jaegerm, H. Kuhlembeck, H.-J. Freund, M. Wutting, W. Hoffman, R. Franchy, H. Ibach, Surf. Sci. 259, 235 (1991)

    Article  ADS  Google Scholar 

  2. U. Bardi, A. Artrei, G. Rovida, Surf. Sci. 268, 87 (1992)

    Article  ADS  Google Scholar 

  3. S. Surnev, M.G. Ramsey, F.P. Netzer, Progr. Surf. Sci. 73, 117 (2003)

    Article  ADS  Google Scholar 

  4. M.S. Chen, D.W. Goodman, J. Phys.: Condens. Matt. 20, 264013 (2008)

    Article  ADS  Google Scholar 

  5. H.-J. Freund, G. Pacchioni, Chem. Soc. Rev. 37, 2224 (2008)

    Article  Google Scholar 

  6. Q. Wu, A. Fortunelli, G. Granozzi, Int. Rev. Phys. Chem. 28, 517 (2009)

    Article  Google Scholar 

  7. M. Finazzi, L. Duò, F. Cicacci, Surface Science Reports 64, 139 (2009)

    Article  ADS  Google Scholar 

  8. M. Sterrer, E. Fischbach, T. Risse, H.-J. Freund, Phys. Rev. Lett. 94, 186101 (2005)

    Article  ADS  Google Scholar 

  9. F. Allegretti, G. Parteder, M.G. Ramsey, S. Surnev, F.P. Netzer, Surf. Sci. 601, L73 (2007)

    Article  ADS  Google Scholar 

  10. A. Rota, S. Altieri, S. Valeri, Phys. Rev. B 79, 161401 (2009)

    Article  ADS  Google Scholar 

  11. S. Altieri, M. Finazzi, H.H. Hsieh, M.W. Haverkort, H.-J. Lin, C.T. Chen, S. Frabboni, G.C. Gazzadi, A. Rot, S. Valeri, L.H. Tjeng, Phys. Rev. B 79, 174431 (2009)

    Article  ADS  Google Scholar 

  12. A. Kokalj, J. Mol. Graphics Modelling 17, 176 (1999). Code available from http://www.xcrysden.org/

    Article  Google Scholar 

  13. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. DalCorso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  14. J.P. Perdew, K. Burke, M. Ernzehof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  15. P.E. Blöchel, Phys. Rev. B 41, 5141 (1990)

    Google Scholar 

  16. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  17. A. Rohrbach, J. Hafner, G. Kresse, Phys. Rev. B 69, 075413 (2004)

    Article  ADS  Google Scholar 

  18. S. Duadarev, A.I. Liechtenstein, M.R. Castell, G.A.D. Briggs, A.P. Sutton, Phys. Rev. B 56, 4900 (1997)

    Article  ADS  Google Scholar 

  19. S. Cassasa, A.M. Ferrari, M. Buso, C. Pisani, J. Phys. Chem. B 106, 12978 (2002)

    Article  Google Scholar 

  20. C. Lamberti, E. Groppo, C. Prestipino, S. Cassasa, A.M. Ferrari, C. Pisani, C. Giovanardi, P. Luches, S. Valeri, Phys. Rev. Lett. 91, 046101 (2003)

    Article  ADS  Google Scholar 

  21. F. Cinquini, L. Giordano, G. Pacchioni, A.M. Ferrari, C. Pisani, C. Roetti, Phys. Rev. B 74, 165403 (2006)

    Article  ADS  Google Scholar 

  22. S. Agnoli, M. Sambi, G. Granozzi, J. Schoiswohl, S. Surnev, F.P. Netzer, M. Ferrero, A.M. Ferrari, C. Pisani, J. Phys. Chem. B 109, 17197 (2005)

    Article  Google Scholar 

  23. A.M. Ferrari, C. Pisani, J. Phys. Chem. B 110, 7909 (2006)

    Article  Google Scholar 

  24. A.M. Ferrari, C. Pisani, J. Phys. Chem. B 110, 7918 (2006)

    Article  Google Scholar 

  25. N. Seriani, J. Harl, F. Mittendorfer, G. Kresse, J. Chem. Phys. 131, 054701 (2009)

    Article  ADS  Google Scholar 

  26. X.Y. Lang, W.T. Zheng, Q. Jiang, Phys. Rev. B 73, 224444 (2006)

    Article  ADS  Google Scholar 

  27. G. Borghi, M. Fabrizio, E. Tosatti, Phys. Rev. Lett 102, 066806 (2009)

    Article  ADS  Google Scholar 

  28. S. Schintke, S. Messerli, M. Pivetta, F. Patthey, L. Libioulle, M. Stengel, A. De Vita, W.-D. Schneider, Phys. Rev. Lett. 87, 276801 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, I., Fortunelli, A. Analysis of the electronic structure of ultrathin NiO/Ag(100) films. Eur. Phys. J. B 75, 5–13 (2010). https://doi.org/10.1140/epjb/e2010-00018-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00018-5

Keywords

Navigation