On two-dimensionalization of three-dimensional turbulence in shell models

Abstract

Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell models we have obtained the following results: (i) progressive steepening of the energy spectrum with increased strength of the rotation, and, (ii) depletion in the energy flux of the forward forward cascade, sometimes leading to an inverse cascade. The presence of extended self-similarity and self-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C. Cambon, L. Jacquin, J. Fluid Mech. 202, 295 (1989)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  2. 2.

    F. Waleffe, Phys. Fluids A 5, 677 (1993)

    MATH  Article  ADS  Google Scholar 

  3. 3.

    L.M. Smith, J.R. Chasnov, F. Waleffe, Phys. Rev. Lett. 77, 2467 (1996)

    Article  ADS  Google Scholar 

  4. 4.

    C.N. Baroud, B.B. Plapp, Z.S. She, H.L. Swinney, Phys. Rev. Lett. 88, 114501 (2002)

    Article  ADS  Google Scholar 

  5. 5.

    C. Morize, F. Moisy, M. Rabaud, Phys. Fluids 17, 095105 (2005)

    Article  ADS  Google Scholar 

  6. 6.

    C.N. Baroud, B.B. Plapp, H.L. Swinney, Z.S. She, Phys. Fluids 15, 2091 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  7. 7.

    C. Morize, F. Moisy, Phys. Fluids 18, 065107 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  8. 8.

    Y. Zhou, Phys. Fluids 7, 2092 (1995)

    MATH  Article  ADS  Google Scholar 

  9. 9.

    V.M. Canuto, M.S. Dubovikov, Phys. Rev. Lett. 78, 666 (1997)

    Article  ADS  Google Scholar 

  10. 10.

    P.K. Yeung, Y. Zhou, Phys. Fluids 10, 2895 (1998)

    Article  ADS  Google Scholar 

  11. 11.

    Y. Hattori, R. Rubinstein, A. Ishizawa, Phys. Rev. E 70, 046311 (2004)

    Article  ADS  Google Scholar 

  12. 12.

    M. Reshetnyak, B. Steffen, The shell model approach to the rotating turbulence, arXiv:physics/0311001

  13. 13.

    W.C. Muller, M. Thiele, Europhys. Lett. 77, 34003 (2007)

    Article  ADS  Google Scholar 

  14. 14.

    X. Yang, J.A. Domaradzki, Phys. Fluids 16, 4088 (2004)

    Article  ADS  Google Scholar 

  15. 15.

    F. Bellet, F.S. Godeferd, J.F. Scott, C. Cambon, J. Fluid Mech. 562, 83 (2006)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  16. 16.

    S. Galtier, Phys. Rev. E 68, R015301 (2003)

    Article  ADS  Google Scholar 

  17. 17.

    C. Cambon, R. Rubinstein, F.S. Godeferd, New J. Phys. 6, 73 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  18. 18.

    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 32, 1 (1941); (English translation: Proc. R. Soc. Lond. A 434, 15 (1991))

    Google Scholar 

  19. 19.

    S. Chakraborty, Phys. Fluids 20, 075106 (2008)

    Article  ADS  Google Scholar 

  20. 20.

    S. Chakraborty, Phys. Fluids 19, 085110 (2007)

    Article  ADS  Google Scholar 

  21. 21.

    S. Chakraborty, Physica D 238, 1256 (2009)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  22. 22.

    S. Chakraborty, J.K. Bhattacharjee, Phys. Rev. E 76, 036304 (2007)

    Article  ADS  Google Scholar 

  23. 23.

    S. Chakraborty, Role of third-order structure function in studying two-dimensionalisation of turbulence, Lev Davidovich Landau and His Impact on Contemporary Theoretical Physics, Horizons in World Physics (Nova Publishers, 2008), Vol. 264, Chap. 14

  24. 24.

    S. Chakraborty, Europhys. Lett. 79, 14002 (2007)

    Article  ADS  Google Scholar 

  25. 25.

    E. Gledzer, Sov. Phys. Dokl. 18, 216 (1973)

    MATH  ADS  Google Scholar 

  26. 26.

    K. Ohkitani, M. Yamada, Prog. Theor. Phys. 81, 329 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  27. 27.

    R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, S. Succi, Phys. Rev. E 48, R29 (1993)

    Article  ADS  Google Scholar 

  28. 28.

    V.S. L’vov, E. Podivilov, A. Pomyalov, I. Proccacia, D. Vandembroucq, Phys. Rev. E 58, 1811 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  29. 29.

    T. Bohr, M.H. Jensen, G. Paladin, A. Vulpiani, Dynamical systems approach to turbulence (Cambridge University Press, Cambridge U.K., 1998)

    Google Scholar 

  30. 30.

    L. Biferale, Annu. Rev. Fluid Mech. 35, 441 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  31. 31.

    D. Biskamp, Phys. Rev. E 50, 2702 (1994)

    Article  ADS  Google Scholar 

  32. 32.

    R. Pandit, S.S. Ray, D. Mitra, Dynamic multiscaling in turbulence, The Proceedings of the IUPAP Conference on Statistical Physics, Statphys 23, Euro. Phys. Journal B (2008)

  33. 33.

    S.S. Ray, D. Mitra, R. Pandit, New J. Phys. 10, 033003 (2008)

    Article  Google Scholar 

  34. 34.

    M.H. Jensen, G. Paladin, A. Vulpiani, Phys. Rev. A 43, 798 (1991)

    Article  ADS  Google Scholar 

  35. 35.

    D. Pisarenko, L. Biferale, D. Courvoisier, U. Frisch, M. Vergassola, Phys. Fluids A 5, 2533 (1993)

    MATH  Article  ADS  Google Scholar 

  36. 36.

    L. Kadanoff, D. Lohse, J. Wang, R. Benzi, Phys. Fluids 7, 617 (1995)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  37. 37.

    Z.S. She, E. Leveque, Phys. Rev. Lett. 72, 336 (1994)

    Article  ADS  Google Scholar 

  38. 38.

    E. Aurell, G. Boffetta, A. Crisanti, P. Frick, G. Paladin, A. Vulpiani, Phys. Rev. E 50, 4705 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  39. 39.

    M.H. Jensen, Phys. Rev. Lett. 83, 76 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Chakraborty.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chakraborty, S., Jensen, M. & Sarkar, A. On two-dimensionalization of three-dimensional turbulence in shell models. Eur. Phys. J. B 73, 447–453 (2010). https://doi.org/10.1140/epjb/e2010-00003-0

Download citation

Keywords

  • Direct Numerical Simulation
  • Shell Model
  • Longitudinal Velocity
  • Inertial Range
  • Energy Cascade