Skip to main content
Log in

Spin hall effect associated with SU(2) gauge field

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we focus on the connection between spin Hall effect and spin force. Here we investigate that the spin force due to spin-orbit coupling, which, in two-dimensional system, is equivalent to forces of Hirsch and Chudnovsky besides constant factors 3 and \(\frac{3}{2}\) respectively, is a part of classic Anandan force, and that the spin Hall effect is an anomalous Hall effect. Furthermore, we develop the method of AC phase to derive the expression for the spin force, and note that the most basic spin Hall effect indeed originate from the AC phase and is therefore an intrinsic quantum mechanical property of spin. This method differs from approach of Berry phase in the study of anomalous Hall effect , which is the intrinsic property of the perfect crystal. On the other hand, we use an elegant skill to show that the Chudnovsky-Drude model is reasonable. Here we have improved the theoretical values of spin Hall conductivity of Chudnovsky. Compared to the theoretical values of spin Hall conductivity in the Chudnovsky-Drude model, ours are in better agreement with experimentation. Finally, we discuss the relation between spin Hall effect and fractional statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-A. Engel, E.I. Rashba, B.I. Halperin, arXiv: cond-mat/0603306

  2. In this paper we only focus on the intrinsic Hall effect, with all extrinsic mechanisms of Hall effect (such as skew scattering and side-jump) disregarded. We will use the expression for the resistivity ρH to distinguish the ordinary and anomalous Hall effect. The ordinary Hall effect means the resistivity reads ρH = R 0 B, and the anomalous Hall effect the resistivity ρH = R 0 B + 4πR s M, where B the applied magnetic field and M the magnetization per unit volume

  3. E.M. Chudnovsky, Phys. Rev. Lett. 99, 206601 (2007)

    Article  ADS  Google Scholar 

  4. E.M. Chudnovsky, Phys. Rev. Lett. 100, 199704 (2008)

    Article  ADS  Google Scholar 

  5. B.A. Bernevig, S.C. Zhang, Phys. Rev. Lett. 96, 106802 (2006), arXiv: cond-mat/0504147

    Article  ADS  Google Scholar 

  6. J. Sinova, et al., Phys. Rev. Lett. 92, 126603 (2004), arXiv: cond-mat/0307663

    Article  ADS  Google Scholar 

  7. S.O. Valenzuela, M. Tinkham, Nature 442, 176 (2006)

    Article  ADS  Google Scholar 

  8. Y. Aharonov, A. Casher, Phys. Rev. Lett. 53, 319 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Anandan, Phys. Lett. A 138, 347 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  10. J. Anandan, Phys. Rev. Lett. 85, 1354 (2000)

    Article  ADS  Google Scholar 

  11. A.S. Goldhaber, Phys. Rev. Lett. 62, 482 (1989)

    Article  ADS  Google Scholar 

  12. J. Fröhlich, U.M. Studer, Rev. Mod. Phys. 65, 733 (1993)

    Article  ADS  Google Scholar 

  13. J.E. Hirsch, Phys. Rev. B 60, 14787 (1999)

    Article  ADS  Google Scholar 

  14. J.E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  15. J.E. Hirsch, arXiv: 0709.1280

  16. M. Schulz, S. Trimper, Phys. Lett. A 372, 5905 (2008)

    Article  ADS  Google Scholar 

  17. V.Y. Kravchenko, Phys. Rev. Lett. 100, 199703 (2008)

    Article  ADS  Google Scholar 

  18. V.Y. Kravchenko, arXiv: 0805, 3724

  19. F. Wilczek, Phys. Rev. Lett. 49, 957 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  20. X.G. He, B.H.J. McKellar, Phys. Lett. B 256, 250(1991)

    Article  MathSciNet  ADS  Google Scholar 

  21. X.G. He, B.H.J. McKellar, Phys. Lett. B 264, 129(1991)

    Article  MathSciNet  ADS  Google Scholar 

  22. L.L. Foldy, Phys. Rev. 87, 688 (1952)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. C.N. Yang, R.L. Mills, Phys. Rev. 96, 191 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  24. P.Q. Jin et al., J. Phys. A: Math. Gen. 39, 7115 (2006), arXiv: cond-mat/0502231

    Article  MATH  ADS  Google Scholar 

  25. S.Q. Shen, Phys. Rev. Lett. 95, 187203 (2005)

    Article  ADS  Google Scholar 

  26. B. Zhou et al., Phys. Rev. B 73, 165303 (2006)

    Article  ADS  Google Scholar 

  27. A. Stern, Phys. Rev. Lett. 68, 1022 (1992)

    Article  ADS  Google Scholar 

  28. C.M. Ryu, Phys. Rev. Lett. 76, 968 (1996)

    Article  ADS  Google Scholar 

  29. A.V. Balatsky, B.L. Altshuler, Phys. Rev. Lett. 70, 1678 (1993)

    Article  ADS  Google Scholar 

  30. M.C. Chang, Q. Niu, Phys. Rev. B 53, 7010 (1996)

    Article  ADS  Google Scholar 

  31. N. Nagaosa et al., arXiv: cond-mat/0904.4154

  32. M.V. Berry, Proc. R. Soc. London Ser. A 392, 45 (1984)

    Article  MATH  ADS  Google Scholar 

  33. T.H. Boyer, Phys. Rev. A 36, 5083 (1987)

    Article  ADS  Google Scholar 

  34. T. Lee, C.M. Ryu, Phys. Lett. A 194, 310 (1994)

    Article  ADS  Google Scholar 

  35. The more general case for singularity function f n (x) has property that \( \nabla \left( {\mathop {\lim }\limits_{n \to \infty } f_n (x)} \right) \ne \mathop {\lim }\limits_{n \to \infty } \left( {\nabla f_n (x)} \right) \) and \( \nabla \left( {\sum\limits_{n = 1}^\infty {f_n (x)} } \right) \ne \sum\limits_{n = 1}^\infty {\left( {\nabla f_n (x)} \right)} \)

  36. F. Wilczek, A. Zee, Phys. Rev. Lett. 52, 2111 (1984); H.Z. Li, Phys. Rev. Lett. 58, 539 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  37. Sun Chang-Pu, Ge Mo-Lin, Science in China A 05, 478 (1990)

    Google Scholar 

  38. Y. Wang et al., Phys. Rev. Lett. 96, 066601 (2006)

    Article  ADS  Google Scholar 

  39. R. Shen et al., Phys. Rev. B 74, 125313 (2006)

    Article  ADS  Google Scholar 

  40. A.V. Rodina, A.Y. Alekseev, Phys. Rev. B 78, 115304 (2008)

    Article  ADS  Google Scholar 

  41. N. Fumita et al., Phys. Rev. D 49, 4277 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, Y. Spin hall effect associated with SU(2) gauge field. Eur. Phys. J. B 73, 125–132 (2010). https://doi.org/10.1140/epjb/e2009-00413-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00413-y

Keywords

Navigation