Skip to main content
Log in

First-principle calculations of structural and electronic properties of rutile-phase dioxides (MO2), M = Ti, V, Ru, Ir and Sn

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

First principle calculations using density functional theory (DFT) and full-potential linearized augmented plane waves (FP-LAPW) method are performed to investigate the structural and electronic properties of rutile phase titanium, vanadium, ruthenium, iridium and tin dioxides, TiO2, VO2, RuO2, IrO2, and SnO2, respectively. The exchange correlation function is described using the local density approximation (LDA) and the generalized gradient approximation (GGA). The structural parameters of the dioxides are found to be in a fair agreement with experimental values and previous calculations. TiO2 exhibits the maximum cohesive energy and RuO2 exhibits the minimum, which is opposite to the trend of pure bulk metals. Titanium dioxide in the left of the periodic table exhibits an insulating behavior with an underestimated bandgap of 2 eV. As the d-band filling increases in VO2, the energy bands shift by 3 eV from those of TiO2 to cross the Fermi level and exhibit a metallic behavior with a pseudo gap to the right of the Fermi level. The energy bands coalescence in RuO2 and IrO2 exhibiting metallic behaviors. However, for a complete filled d-band SnO2, the insulating behavior is retrieved. The distortion of the octahedrons in the rutile structure lifts the degeneracy of the eg orbitals causing further splittings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • W.-X. Li, C. Stampl, M. Scheffler, Phys. Rev. B 68, 165412 (2003)

    Google Scholar 

  • B.L.M. Hendriksen, S.C. Bobaru, J.W.M. Frenken, Surf. Sci. 552, 229 (2004)

    Google Scholar 

  • H. Over, M. Muhler, Prog. Surf. Sci. 72, 3 (2003)

    Google Scholar 

  • M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, J.M. Genet, B. Delmon, J. Catal. 144, 175 (1993)

    Google Scholar 

  • D.B. Rogers, R.D. Shannon, A.W. Sleight, J.L. Gillson, Inorg. Chem. 8, 841 (1969)

    Google Scholar 

  • V.E. Henrich, P.A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994)

  • D. Adler, Solid State Physics (Academic, New York, 1968), Vol. 21, p. 1

  • J.B. Goodenough, Phys. Rev. 117, 1442 (1960)

    Google Scholar 

  • R.M. Wentzcovitch, W.W. Schulz, P.B. Allen, Phys. Rev. Lett. 72, 3389 (1994)

    Google Scholar 

  • J. Pedder, Electrocomp. Sci. Tech. 2, 259 (1976)

    Google Scholar 

  • A.K. Goel, G. Skorinko, F.H. Pollak, Phys. Rev. B 24, 7342 (1981)

    Google Scholar 

  • A.T. Ashcroft, A.K. Cheethan, J.S. Foord, M.L.H. Green, C.P. Grey, A.J. Murrell, P.D.F. Vernon, Nature 344, 319 (1990)

  • Y. Igarashi, K. Tani, M. Kasai, K. Ahikaga, T. Ito, Jpn J. Appl. Phys. 39, 2083 (2000)

    Google Scholar 

  • S.W. Lee, Y.W. Kim, H. Chen, Appl. Phys. Lett. 78, 350 (2001)

    Google Scholar 

  • K.L. Chopra, S. Mayor, D.K. Pandya, Thin Solid Films 102, 1 (1983)

    Google Scholar 

  • K.B. Sundaram, G.K. Bhagavat, J. Phys. D 16, 69 (1983)

    Google Scholar 

  • S. Wang, J. Huang, Y. Zhao, S. Wang, X. Wang, T. Zhang, S. Wu, S. Zhang, W. Huang, J. Mol. Catal. A 259, 245 (2006)

    Google Scholar 

  • P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

  • W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

  • P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, Technical Universität (Wien, Austria, 2001), ISBN 3-9501031-1-2

  • J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Google Scholar 

  • J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Google Scholar 

  • P.I. Sorantin, K. Schwarz, Inorg. Chem. 31, 567 (1992)

    Google Scholar 

  • R. Wyckoff, Crystal Structures, 2nd. edn. (Interscience, New York, 1964), Vol. 1

  • V. Jeanne-Rose, B. Poumellec, J. Phys.: Condens. Matter 11, 1123 (1999)

    Google Scholar 

  • J. Goniakowski, J.M. Holender, L.N. Kantorovich, M.J. Gillan, J.A. White, Phys. Rev. B 53, 957 (1996)

    Google Scholar 

  • D.B. McWhan, M. Marezio, J.P. Remeika, P.D. Dernier, Phys. Rev. B 10, 490 (1974)

    Google Scholar 

  • J. Haines, J.M. Le’ger, O. Schulte, S. Hull, Acta Crystallogr., Sect. B: Struct. Sci. 53, 880 (1997)

    Google Scholar 

  • J.S. Tse, D.D. Klug, K. Uehara, Z.Q. Li, J. Haines, J.M. Léger, Phys. Rev. B 61, 10029 (2000)

    Google Scholar 

  • A.A. Bolzan, C. Fong, B.J. Kennedy, C.J. Howard, Acta Cryst. B 53, 373 (1997)

    Google Scholar 

  • CRC, Handbook of chemistry and physics, 64th edn. (CRC Boca Raton, FL, 1983)

  • K.M. Glassford, J.R. Chelikowsky, Phys. Rev. B 46, 1284 (1992)

    Google Scholar 

  • S.D. Mo, W.Y. Ching, Phys. Rev. B 51, 13023 (1995)

    Google Scholar 

  • M.Y. Kuo, C.L. Chen, C.Y. Hua, H.C. Yang, P. Shen, J. Phys. Chem. B 109, 8693 (2005)

    Google Scholar 

  • R. Asahi, Y. Taga, W. Mannstadt, A.J. Freeman, Phys. Rev. B 61, 1490 (2000)

    Google Scholar 

  • E. Wimmer, H. Krakauer, M. Weinert, A.J. Freeman, Phys. Rev. B 24, 864 (1981)

    Google Scholar 

  • J. Pascual, J. Camassel, H. Mathieu, Phys. Rev. Lett. 39, 1490 (1977)

    Google Scholar 

  • F. Arntz, Y. Yacoby, Phys. Rev. Lett. 17, 857 (1966)

    Google Scholar 

  • H. Tang, F. Levy, H. Berger, P.E. Schmid, Phys. Rev. B 52, 7771 (1995)

    Google Scholar 

  • V. Duzhko, V.Y. Timoshenko, F. Koch, T. Dittrich, Phys. Rev. B 64, 075204 (2001)

    Google Scholar 

  • K. Watanabe, K. Inoue, F. Minami, Phys. Rev. B 46, 2024 (1992)

  • J.P. Perdew, M. Levy, Phys. Rev. Lett. 51, 1884 (1983); A. Zunger, J.P. Perdew, G.L. Oliver, Solid State Commun. 34, 933 (1980)

    Google Scholar 

  • R.A. Heaton, C.C. Lin, Phys. Rev. B 17, 853 (1984)

    Google Scholar 

  • L. Hedin, Phys. Rev. 139, A796 (1965); L. Hedin, S. Lundquist, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, D. Turnbull (Academic, New York, 1969), Vol. 23, p. 1

  • J.S. Griffith, The Theory of Transition-Metal Ions (Cambridge University Press, Cambridge, UK, 1971)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Hamad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamad, B. First-principle calculations of structural and electronic properties of rutile-phase dioxides (MO2), M = Ti, V, Ru, Ir and Sn. Eur. Phys. J. B 70, 163–169 (2009). https://doi.org/10.1140/epjb/e2009-00218-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00218-0

PACS

Navigation