The European Physical Journal B

, Volume 69, Issue 2, pp 167–171 | Cite as

Organic superconductors revisited

STM imaging and DFT based simulations of the bc plane of κ-(BEDT-TTF)2Cu(NCS)2
  • C. Rohr
  • J. M. Büttner
  • F. A. Palitschka
  • N. D. Kushch
  • M. V. Kartsovnik
  • W. Biberacher
  • R. Gross
  • B. A. Hermann
Solid State and Materials

Abstract

The surfaces of a ten years aged crystal and a freshly prepared κ-(BEDT-TTF)2Cu(NCS)2 crystal were compared by scanning tunneling microscopy (STM). The molecularly-resolved STM images of the bc plane of the crystals agree with each other and with the electronic contrast obtained by new density functional theory (DFT) based simulations. Even after ten years STM images of the molecular stacking of BEDT-TTF display a variation in brightness at the positions of different molecules. We attribute this symmetry breaking concerning the brightness in the STM images of the otherwise equivalent BEDT-TTF dimers to the electronic states of a relaxed surface.

PACS

68.37.Ef Scanning tunneling microscopy 74.70.Kn Organic superconductors 71.15.Mb Density functional theory, local density approximation, gradient and other corrections 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Urayama, H. Yamochi, G. Saito, K. Nozawa, T. Sugano, M. Kinoshita, S. Sato, K. Oshima, A. Kawamoto, J. Tanaka, Chem. Lett. 1988, 55 (1988)Google Scholar
  2. N. Kinoshita, K. Takahashi, K. Murata, M. Tokumoto, H. Anzai, Solid State Commun. 67, 465 (1988)Google Scholar
  3. H. Urayama, H. Yamochi, G. Saito, S. Sato, A. Kawamoto, J. Tanaka, T. Mori, Y. Maruyama, H. Inokuchi, Chem. Lett. 1988, 463 (1988)Google Scholar
  4. T. Ishiguro, K. Yamaji, G. Saito, Organic Superconductors, 2nd edn. (Springer, Berlin, 2007)Google Scholar
  5. T. Arai, K. Ichimura, K. Nomura, S. Takasaki, J. Yamada, S. Nakatsuji, H. Anzai, Phys. Rev. B 63, 104518 (2001)Google Scholar
  6. T. Arai, K. Ichimura, K. Nomura, S. Takasaki, J. Yamada, S. Nakatsuji, H. Anzai, Solid State Commun. 116, 679 (2000)Google Scholar
  7. Ø. Fischer, M. Kugler, I. Maggio-Aprile, Christophe Berthod, Rev. Mod. Phys. 79, 353 (2007)Google Scholar
  8. S.A. French, C.R.A. Catlow, J. Phys. Chem. Solids 65, 39 (2004)Google Scholar
  9. T. Kawakami, T. Taniguchi, S. Nakano, Y. Kitagawa, K. Yamaguchi, Polyhedron 22, 2051 (2003)Google Scholar
  10. B. Barszcz, A. Lapiński, A. Graja, A.M. Flakina, A.N. Chekhlov, R.N. Lyubovskaya, Chem. Phys. 330, 486 (2006)Google Scholar
  11. A. Fortunelli, A. Painelli, Synth. Metals 85, 1631 (1997)Google Scholar
  12. Y. Imamura, S. Ten-no, K. Yonemitsu, Y. Tanimura, J. Chem. Phys. 111, 5986 (1999)Google Scholar
  13. M. Ishida, O. Takeuchi, T. Mori, H. Shigekawa, Phys. Rev. B 64, 153405 (2001)Google Scholar
  14. H. Bando, S. Kashiwaya, H. Tokumoto, H. Anzai, N. Kinoshita, K. Kajimura, J. Vac. Sci. Technol. A 8, 479 (1990)Google Scholar
  15. M. Yoshimura, K. Fujita, N. Ara, M. Kageshima, R. Shioda, A. Kawazu, H. Shigekawa, S. Hyodo, J. Vac. Sci. Technol. A 8, 488 (1990)Google Scholar
  16. Y. Mori, Y. Maruyama, H. Mori, G. Saito, Jpn J. Appl. Phys. 30, L358 (1991)Google Scholar
  17. Y.F. Miura, A. Kasai, T. Nakamura, H. Komizu, M. Matsumoto, Y. Kawabata, Mol. Cryst. Liq. Cryst. 196, 161 (1991)Google Scholar
  18. S.N. Magonov, G. Bar, E. Keller, E.B. Yagubskii, E.E. Laukhina, H.-J. Cantow, Ultramicroscopy 42–44, 1009 (1992)Google Scholar
  19. R. Fainchtein, S.T. D’Arcangelis, S.S. Yang, D.O. Cowan, Science 256, 1012 (1992)Google Scholar
  20. H. Shigekawa, K. Miyake, H. Oigawa, Y. Nannichi, T. Mori, Y. Saito, Phys. Rev. B 50, 15427 (1994)Google Scholar
  21. M. Yoshimura, H. Shigekawa, H. Nejoh, G. Saito, Y. Saito, A. Kawazu, Phys. Rev. B 43, 13590 (1991)Google Scholar
  22. J. Moser, J.R. Cooper, D. Jérome, B. Alavi, S.E. Brown, K. Bechgaard, Phys. Rev. Lett. 84, 2674 (2000)Google Scholar
  23. C.E. Campos, J.S. Brooks, P.J.M. van Bentum, J.A.A.J. Perenboom, S.J. Klepper, P. Sandhu, M. Tokumoto, T. Kinoshita, N. Kinoshita, Y. Tanaka, H. Anzai, Physica B 211, 293 (1995)Google Scholar
  24. R. Li, V. Petricek, G. Yang, P. Coppens, M. Naughton, Chem. Mater. 10, 1521 (1998)Google Scholar
  25. M. Rahal, D. Chasseau, J. Gaultier, L. Ducasse, M. Kurmoo, P. Day, Acta Cryst. B 53, 159 (1997)Google Scholar
  26. S. Yoon, W.F. Smith, M. Yoo, A. L. deLozanne, R. Fainchtein, T.J. Kistenmacher, S.T. D’Arcangelis, D.O. Cowan, Phys. Rev. B 47, 4802 (1993)Google Scholar
  27. M. Ishida, O. Takeuchi, T. Mori, H. Shigekawa, Jpn. J. Appl. Phys. 39, 3823 (2000)Google Scholar
  28. S. Behler, S.H. Pan, M. Bernasconi, P. Jess, H.J. Hug, O. Fritz, H.-J. Güntherodt, J. Vac. Sci. Technol. B 12, 2209 (1994)Google Scholar
  29. L.J. Scherer, L. Merz, E.C. Constable, C.E. Housecroft, M. Neuburger, B.A. Hermann, J. Am. Chem. Soc. 127, 4033 (2005)Google Scholar
  30. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)Google Scholar
  31. Accelrys Software Inc., Materials Studio, Release 4.2 (San Diego: Accelrys Software Inc., 2008)Google Scholar
  32. B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen, J. Comput. Phys. 131, 233 (1997)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • C. Rohr
    • 1
  • J. M. Büttner
    • 1
  • F. A. Palitschka
    • 1
  • N. D. Kushch
    • 2
  • M. V. Kartsovnik
    • 3
  • W. Biberacher
    • 3
  • R. Gross
    • 4
    • 5
  • B. A. Hermann
    • 1
  1. 1.Walther-Meissner-Institute (WMI) of Low Temperature Research of the Bavarian Academy of Science and Faculty of Physics/Center for Nano Science (CeNS)Garching b. MünchenGermany
  2. 2.Institute of Problems of Chemical Physics, Russian Academy of ScienceMoscow-regionRussia
  3. 3.Walther-Meissner-InstitutGarchingGermany
  4. 4.Walther-Meissner-Institut, Bayerische Akademie der WissenschaftenGarchingGermany
  5. 5.Physik-DepartmentTechnische Universität MünchenGarchingGermany

Personalised recommendations