The European Physical Journal B

, Volume 68, Issue 2, pp 233–236 | Cite as

Electron and hole effective masses in self-assembled quantum dots

  • A. P. Zhou
  • W. D. ShengEmail author
Mesoscopic and Nanoscale Systems


Electron and hole effective masses in self-assembled InAs/GaAs quantum dots are determined by fitting the energy levels calculated by a single-band model to those obtained by a more sophisticated tight-binding method. For the dots of various shapes and dimensions, the electron effective-mass is found to be much larger than that in the bulk and become anisotropic in the dots of large aspect ratio while the hole effective-mass becomes almost isotropic in the dots of small aspect ratio. For flat InAs/GaAs quantum dots, the most appropriate value for the electron and hole effective-mass is believed to be the electron effective-mass in bulk GaAs and the vertical heavy-hole effective-mass in bulk InAs, respectively.


71.18.+y Fermi surface: calculations and measurements; effective mass, g factor 73.22.Dj Single particle states 73.21.La Quantum dots 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. T.B. Bahder, Phys. Rev. B 41, 11992 (1990)Google Scholar
  2. O. Stier, M. Grundmann, D. Bimberg, Phys. Rev. B 59, 5688 (1999)Google Scholar
  3. W. Sheng, J.-P. Leburton, Appl. Phys. Lett. 80, 2755 (2002)Google Scholar
  4. S. Lee, L. Jonsson, J.W. Wilkins, G.W. Bryant, G. Klimeck, Phys. Rev. B 63, 195318 (2001)Google Scholar
  5. S. Lee, J. Kim, L. Jönsson, J.W. Wilkins, G.W. Bryant, G. Klimeck, Phys. Rev. B 66, 235307 (2002)Google Scholar
  6. A.J. Williamson, L.W. Wang, A. Zunger, Phys. Rev. B 62, 12963 (2000)Google Scholar
  7. F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M.H. Pilkuhn, B. Ohnesorge, A. Forchel, J. Appl. Phys. 80, 4019 (1996)Google Scholar
  8. T. Yamauchi, Y. Matsuba, L. Bolotov, M. Tabuchi, A. Nakamura, Appl. Phys. Lett. 77, 4368 (2000)Google Scholar
  9. M. Motyka, G. Sek, K. Ryczko, J. Andrzejewski, J. Misiewicz, L.H. Li, A. Fiore, G. Patriarche, Appl. Phys. Lett. 90, 181933 (2004)Google Scholar
  10. W. Rudno-Rudziński, G. Sck, J. MisiewiczJ, T.E. Lamas, A.A. Quivy, J. Appl. Phys. 101, 073518 (2007)Google Scholar
  11. L. Seravalli, M. Minelli, P. Frigeri, P. Allegri, V. Avanzini, S. Franchi, Appl. Phys. Lett. 82, 2341 (2003)Google Scholar
  12. J.-Z. Zhang, I. Galbraith, Appl. Phys. Lett. 84, 1934 (2004)Google Scholar
  13. N. Vukmirović, Ž. Gačević, Z. Ikonić, D. Indjin, P. Harrison, V. Milanović, Semicond. Sci. Technol. 21, 1098 (2006)Google Scholar
  14. A. Persano, A. Cola, A. Taurino, M. Catalano, M. Lomascolo, J. Appl. Phys. 102, 094314 (2007)Google Scholar
  15. W. Sheng, S.-J. Cheng, P. Hawrylak, Phys. Rev. B 71, 035316 (2005)Google Scholar
  16. W. Sheng, S.J. Xu, P. Hawrylak, Phys. Rev. B 77, 241307(R) (2008)Google Scholar
  17. S. Lee, L. Jönsson, J.W. Wilkins, G.W. Bryant, G. Klimeck, Phys. Rev. B 63, 195318 (2001)Google Scholar
  18. W. Jaskólski, M. Zieliński, G.W. Bryant, J. Aizpurua, Phys. Rev. B 74, 195339 (2006)Google Scholar
  19. G. Janssen, E. Goovaerts, A. Bouwen, B. Partoens, B. Van Daele, N. Urauskien, P.M. Koenraad, J.H. Wolter, Phys. Rev. B. 68, 045329 (2003)Google Scholar
  20. L.M. Roth, B. Lax, S. Zwerdling, Phys. Rev. 114, 90 (1959)Google Scholar
  21. M.H. Gass, A.J. Papworth, R. Beanland, T.J. Bullough, P.R. Chalker, Phys. Rev. B 73, 035312 (2006)Google Scholar
  22. M. Sugawara, N. Okazaki, T. Fujii, S. Yamazaki, Phys. Rev. B 48, 8102 (1993)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Surface Physics Laboratory and Department of Physics, Fudan UniversityShanghaiP.R. China

Personalised recommendations