The European Physical Journal B

, Volume 68, Issue 1, pp 1–21 | Cite as

Topics in the theory of amorphous materials

Colloquium

Abstract

In this Colloquium, I describe some current frontiers in the physics of semiconducting amorphous materials and glasses, including a short, but self-contained discussion of techniques for creating computer models, among them the quench from the melt method, the Activation-Relaxation Technique, the decorate and relax method, and the experimentally constrained molecular relaxation scheme. A representative study of an interesting and important glass (amorphous GeSe3:Ag) is provided. This material is a fast-ion conductor and a serious candidate to replace current FLASH memory. Next, I discuss the effects of topological disorder on electronic states. By computing the decay of the density matrix in real space, and also computing well-localized Wannier functions, we close with a quantitative discussion of Kohn’s Principle of Nearsightedness in amorphous silicon.

PACS

61.43.-j Disordered solids 61.43.Bn Structural modeling: serial-addition models, computer simulation 61.43.Fs Glasses 71.23.Cq Amorphous semiconductors, metallic glasses, glasses 71.23.An Theories and models; localized states 66.30.Dn Theory of diffusion and ionic conduction in solids 71.23.-k Electronic structure of disordered solids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.R. Elliott, Physics of Disordered Materials, 2nd edn. (Longman, Essex, UK, 1990)Google Scholar
  2. R. Zallen, Physics of Amorphous Solids (Wiley, New York, 1983)Google Scholar
  3. R. Waser, M. Aono, Nature Materials 6, 833 (2007); M. Mitkova, M.N. Kozicki, J. Non. Cryst. Sol. 299–302, 1023 (2002)Google Scholar
  4. M. Wuttig, N. Yamada, Nature Materials 6, 824 (2007)Google Scholar
  5. F. Wooten, D. Weaire, in Modeling tetrahedrally bonded random networks by computer, Solid State Physics, edited by H. Ehrenreich, D. Turnbull, F. Seitz (New York: Academic, 1987), p. 40; F. Wooten, K. Winer, D. Weaire, Phys. Rev. Lett. 54, 1392 (1985)Google Scholar
  6. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999)Google Scholar
  7. F. Stillinger, Phys. Rev. E 59, 48 (1999)Google Scholar
  8. V. Ramakrishnan, Nature 407, 21 (2000)Google Scholar
  9. M.M.J. Treacy, J.M. Gibson, L. Fan, D.J. Paterson, I. McNulty, Rep. Prog. Phys. 68, 2899 (2005)Google Scholar
  10. A.E. Carlsson, in Solid State Physics, Adv. in research and Applications, edited by H. Ehrenreich, D. Turnbull (Academic, New York, 1990), Vol. 43, p. 1Google Scholar
  11. D.A. Drabold, P.A. Fedders, P. Stumm, Phys. Rev. Lett. 72, 2666 (1994)Google Scholar
  12. P.N. Keating, Phys. Rev. 145, 637 (1966)Google Scholar
  13. A. Trave, P. Tangney, S. Scandolo, A. Pasquarello, R. Car, Phys. Rev. Lett. 89, 245504 (2002)Google Scholar
  14. B.W.H. Vanbeest, G.J. Kramer, R.A. Vansanten, Phys. Rev. Lett. 64, 1955 (1990)Google Scholar
  15. For example, K. Vollmayr, W. Kob, K. Binder, Phys. Rev. B 54, 15808 (1996); see also K. Binder, W. Kob, Glassy materials and disordered solids: An introduction to their statistical mechanics (World Scientific, Singapore, 2005)Google Scholar
  16. W.A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Freeman, San Francisco, 1980)Google Scholar
  17. W.M. Foulkes, R. Haydock, Phys. Rev. B 39, 12520 (1989)Google Scholar
  18. O.F. Sankey, R.E. Allen, Phys. Rev. B 33, 7164 (1985)Google Scholar
  19. L. Goodwin et al., Europhys. Lett. 9, 701 (1989), see also J. Mercer, M.Y. Chou, Phys. Rev. B 47, 9366 (1993)Google Scholar
  20. C.H. Xu et al., J. Phys. Cond. Matt. 4, 6047 (1992)Google Scholar
  21. G. Seifert, R. Jones, Z. Phys. D 20, 77 (1991); M. Elstner, T. Frauenheim, E. Kaxiras, G. Seifert, S. Suhai, Phys. Stat. Sol. (b) 217, 357 (2000)Google Scholar
  22. P. Ordejón, Comput. Mater. Sci. 12, 157 (1998); S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999)Google Scholar
  23. L. Colombo, Rivista Del Nuovo Cimento 28, 1 (2005)Google Scholar
  24. L.J. Lewis, N. Mousseau, Comp. Matl. Science 12, 210 (1998)Google Scholar
  25. L. Colombo, M. Rosati, Comput. Phys. Comm. 128, 108 (2000)Google Scholar
  26. D.R. Hartee, Proc. Cambridge Phil. Soc. 24, 89 (1928)Google Scholar
  27. F. Fock, Z. Phys. 61, 126 (1930)Google Scholar
  28. M. Born, J.R. Oppenheimer, Ann. Phys. 84, 457 (1927)Google Scholar
  29. J. Kohanoff, Electronic structure calculations for solids and molecules (Cambridge University Press, Cambridge, 2006)Google Scholar
  30. E. Fermi, Z. Phys. 48, 73 (1927); L.H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927)Google Scholar
  31. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)Google Scholar
  32. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004)Google Scholar
  33. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)Google Scholar
  34. See M.S. Hybertsen, S.G. Louie, Phys. Rev. B 34, 5390 (1986)Google Scholar
  35. E. Artacho et al., J. Phys.: Condens. Matter 20, 064208 (2008); J.M. Soler, E. Artacho, J.D. Gale, A. Garca, J. Junquera, P. Ordejón, D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002); http://www.uam.es/departamentos/ciencias/fismateriac/siesta/Google Scholar
  36. O.F. Sankey, D.J. Niklewski, Phys. Rev. B 40, 3979 (1989); J.P. Lewis, K.R. Glaesman, G.A. Voth, J. Fritsch, A.A. Demkov, J. Ortega, O.F. Sankey, Phys. Rev. B 64, 195103 (2001); http://www.fireball-dft.org/web/fireballHomeGoogle Scholar
  37. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996); http://cms.mpi.univie.ac.at/vasp/Google Scholar
  38. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992); www.castep.orgGoogle Scholar
  39. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985); www.cpmd.orgGoogle Scholar
  40. http://www.quantum-espresso.org/Google Scholar
  41. http://www.abinit.org/Google Scholar
  42. E. Holmberg, Astrophys. J. 94, 385 (1941)Google Scholar
  43. I thank Prof. Tom Statler for pointing this outGoogle Scholar
  44. M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Oxford University Press, Oxford, 1987)Google Scholar
  45. J. Sarnthein, A. Pasquarello, R. Car, Phys. Rev. Lett. 74, 4682 (1995)Google Scholar
  46. C. Massobrio, A. Pasquarello, Phys. Rev. B 64, 144205 (2001); L. Giacomazzi, C. Massobrio, A. Pasquarello, Phys. Rev. B 75, 174207/1-13 (2007)Google Scholar
  47. M. Cobb, D.A. Drabold, R.L. Cappelletti, Phys. Rev. B 54, 12162 (1996)Google Scholar
  48. G. Fabricius et al., Phys. Rev. B 60, 16283 (1999)Google Scholar
  49. N. Jakse, A. Pasturei, Phys. Rev. Lett. 99, 205702 (2007)Google Scholar
  50. G.T. Barkema, N. Mousseau, Phys. Rev. Lett. 77, 4358 (1996)Google Scholar
  51. N. Mousseau, G.T. Barkema, Phys. Rev. E 57, 2419 (1998)Google Scholar
  52. N. Mousseau, L.J. Lewis, Phys. Rev. Lett. 78, 1484 (1997)Google Scholar
  53. N. Mousseau, L.J. Lewis, Phys. Rev. B 56, 9461 (1997)Google Scholar
  54. J.P.K. Doye, D.J. Wales, Z. Phys. D 40, 194 (1997)Google Scholar
  55. R. Malek, N. Mousseau, Phys. Rev. E 62, 7723 (2000)Google Scholar
  56. C. Lanczos, Applied Analysis (Prentice Hall, New York, 1956)Google Scholar
  57. R. Kaplow, T.A. Rowe, B.L. Averbach, Phys. Rev. 168, 1068 (1968)Google Scholar
  58. R.L. McGreevy, L. Pusztai, Mol. Sim. 1, 359 (1988)Google Scholar
  59. A.K. Soper, Phys. Rev. B 72, 104204 (2005)Google Scholar
  60. G. Evrard, L. Pusztai, J. Phys. Cond. Matt. 17, S1 (2005)Google Scholar
  61. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)Google Scholar
  62. G. Opletal et al., J. Phys.: Condens. Matter 17, 2605 (2005)Google Scholar
  63. A. Jack, M. Levitt, M. Acta Crystallogr. A 34, 931 (1978)Google Scholar
  64. P. Biswas, D.N. Tafen, F. Inam, B. Cai, D.A. Drabold, J. Phys. Cond. Matt. 21, 084207 (2009)Google Scholar
  65. P. Biswas, D.N. Tafen, R. Atta-Fynn, D.A. Drabold, J. Phys. Cond. Matter 16, S5173 (2004); P. Biswas, D. Tafen, D.A. Drabold, Phys. Rev. B 71, 054204 (2005)Google Scholar
  66. R.L. Cappelletti, M. Cobb, D.A. Drabold, W.A. Kamitakahara, Phys. Rev. B 52, 9133 (1995)Google Scholar
  67. P. Biswas, R. Atta-Fynn, D.A. Drabold, Phys. Rev. B 76, 125210 (2007)Google Scholar
  68. E.T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, 2003)Google Scholar
  69. G.L. Bretthorst, Bayesian Spectrum Analysis and Parameter Estimation (Springer, New York, 1988). Available at http://bayes.wustl.eduGoogle Scholar
  70. M. Habeck, W. Rieping, M. Nilges, Proc. Nat. Acad. Sci. USA 103, 1756 (2006)Google Scholar
  71. N. Mousseau, G.T. Barkema, J. Phys. Cond. Matt. 16, S5183 (2004)Google Scholar
  72. N. Mousseau, G.T. Barkema, Phys. Rev. B 61, 1898 (2000)Google Scholar
  73. S. Nakhmanson, P. Voyles, N. Mousseau, G. Barkema, D.A. Drabold, Phys. Rev. B 63, 235207 (2001)Google Scholar
  74. M.F. Thorpe, S.W. de Leeuw, Phys. Rev. B 33, 8490 (1986)Google Scholar
  75. P.M. Voyles, N. Zotov, S.M. Nakhmanson, D.A. Drabold, J.M. Gibson, M.M.J. Treacy, P. Keblinski, J. Appl. Phys. 90, 4437 (2001)Google Scholar
  76. D.N. Tafen, D.A. Drabold, Phys. Rev. B 68, 165208 (2003); D.N. Tafen, D.A. Drabold, Phys. Rev. B 71, 054206 (2005)Google Scholar
  77. R.L.C. Vink, G.T. Barkema, Phys. Rev. B 67, 245201 (2003)Google Scholar
  78. M.G. Tucker, D.A. Keen, M.T. Dove, K. Trachenko, J. Phys. Cond. Matt. 17, S67 (2005); R.L. Mozzi, B.E. Warren, J. Appl. Crystallogr. 2, 164 (1969); R. Pettifer el al., J. Non.-Cryst. Sol. 106, 408 (1988); R.F. Pettifer, R. Dupree, I. Farnan, U. Sternberg, J. Non- Cryst. Solids 106, 408 (1988) Google Scholar
  79. P.A.V. Johnson, A.C. Wright, R.N. Sinclair, J. Non-Cryst. Sol. 58, 109 (1983)Google Scholar
  80. X. Zhang, Ph.D. thesis, Ohio University, 2001Google Scholar
  81. N. de la Rosa et al., Phys. Rev. B 33, 4094 (1986)Google Scholar
  82. I. Santos, W. Windl, L. Pelaz, L.A. Marques, D.A. Drabold, submitted to Phys. Rev. Lett.Google Scholar
  83. P. Krecmer, A.M. Moulin, R.J. Stephenson, T. Rayment, M.E. Welland, S.R. Elliott, Science 277, 1799 (1997)Google Scholar
  84. G. Ceder, M. Doyle, P. Arota, Y. Fuentes, MRS Bulletin 27, 619 (2002)Google Scholar
  85. T. Kawaguchi, S. Maruno, S.R. Elliott, J. Appl. Phys. 79, 9096 (1996)Google Scholar
  86. M. Kawasaki, J. Kawamura, Y. Nakamura, M. Aniya, Solid State Ionics 123, 259 (1999)Google Scholar
  87. H. Iyetomi, P. Vashishta, R.K. Kalia, J. Non. Cryst. Sol. 262, 135 (2000)Google Scholar
  88. S.C. Moss, D.L. Price, Physics of disordered materials, edited by D. Adler, H. Fritzsche, S.R. Ovshinsky (Plenum, New York, 1985), p. 77Google Scholar
  89. J. Habasaki, K.L. Ngai, Y. Hiwatari, J. Chem. Phys. 122, 054507 (2005)Google Scholar
  90. T. Kawaguchi, Photo-induced deposition of silver particles on amorphous semiconductors, in Photo-induced metastability in amorphous semiconductors, edited by A.V. Kolobov (Wiley, Weinheim, 2003), p. 182Google Scholar
  91. M. Mitkova, Real time optical recording on thin films of amorphous semiconductors, in Insulating and semiconducting glasses, edited by P. Boolchand (World Scientific, Singapore, 2000), p. 813Google Scholar
  92. Y. Wang, M. Mitkova, D.G. Georgiev, S. Mamedov, P. Boolchand, J. Phys. Cond. Matt. 15, S1573 (2003)Google Scholar
  93. M.N. Kozicki, M. Park, M. Mitkova, IEEE Trans. Nanotech. 4, 331 (2005) Google Scholar
  94. J.S. Romero, A.G. Fitzgerals, M.J. Rose, Appl. Surf. Sci. 234, 369 (2004)Google Scholar
  95. K. Terabe, T. Hasegawa, T. Nakayama, M.A. Aono, Nature 433, 47 (2005)Google Scholar
  96. D.N. Tafen, D.A. Drabold, M. Mitkova, Phys. Status Solidi B 242, R55 (2005); De Nyago Tafen, D.A. Drabold, M. Mitkova, Phys. Rev. B 72, 054206 (2005)Google Scholar
  97. I. Chaudhuri, F. Inam, D.A. Drabold, Phys. Rev. B (in press), www.arxiv.org/abs/0811.1982 Google Scholar
  98. A. Piarristeguy, M. Fontana, B. Arcondo, J. Non. Cryst. Sol. 332, 1 (2003)Google Scholar
  99. X. Zhang, D. Drabold, Intl. J. Modern Phys. B, 15, 3190 (2001); X. Zhang, D.A. Drabold, Phys. Rev. Lett. 83, 5042 (1999)Google Scholar
  100. M.N. Kozicki, M. Mitkova, J. Non-Cryst. Solids 352, 567 (2006)Google Scholar
  101. M. Kawasaki, J. Kawamura, Y. Nakamura, M. Aniya, Solid State Ionics 123, 259 (1999)Google Scholar
  102. A.V. Kolobov, S.R. Elliott, Advances in Physics 40, 625 (1991)Google Scholar
  103. E. Bychkov, V. Tsegelnik, Y. Vlasov, A. Pradel, M. Ribes, J. Non-Cryst. Solids 208, 1 (1996)Google Scholar
  104. M.A. Urena, A.A. Piarristeguy, M. Fontana, B. Arcondo, Solid State Ionics 176, 505 (2005)Google Scholar
  105. S.R. Elliott, J. Non-Cryst. Solids 172174, 1343 (1994)Google Scholar
  106. J.C. Phillips, Rep. Prog. Phys. 59, 1133 (1996)Google Scholar
  107. S. Adams, J. Swenson, Phys. Rev. Lett. 84, 4144 (2000)Google Scholar
  108. E.R. Weeks, D.A. Weitz, Phys. Rev. Lett. 89, 0957704 (2002)Google Scholar
  109. J. Habasaki, I. Okada, Y. Hiwatari, Phys. Rev. B 55, 6309 (1997)Google Scholar
  110. J. Habasaki, Y. Hiwatari, Phys. Rev. E 59, 6962 (1999)Google Scholar
  111. J. Habasaki, K.L. Ngai, Y. Hiwatari, Phys. Rev. E 66, 021205 (2002)Google Scholar
  112. C. Massobrio, A. Pasquarello, Phys. Rev. B 64, 144205 (2001)Google Scholar
  113. L. Giacomazzi, C. Massobrio, A. Pasquarello, Phys. Rev. B 75, 1 (2007)Google Scholar
  114. D.A. Drabold, T.A. Abtew, F. Inam, Y. Pan, J. Non-Cryst. Solids 354, 2149 (2008)Google Scholar
  115. P.W. Anderson, Phys. Rev. 109, 1492 (1958)Google Scholar
  116. S. Graffi, M. Lenci, J. Stat. Phys. 116, 821 (2004)Google Scholar
  117. D.S. Wiersma et al., Nature 390, 671 (1997)Google Scholar
  118. G. Roati et al., Nature 453, 895 (2008)Google Scholar
  119. K. Tanaka, M. Tanaka, Appl. Phys. Lett. 71, 3793 (1997)Google Scholar
  120. N.F. Mott, Electronic Processes in Noncrystalline Materials (Oxford University Press, Oxford, 1978)Google Scholar
  121. N.F. Mott, Rev. Mod. Phys. 50, 203 (1978); http://nobelprize.org/nobel_prizes/physics/laureates/1977/mott-lecture.htmlGoogle Scholar
  122. I. Kwon et al., Phys. Rev. B 49, 7242 (1994)Google Scholar
  123. R. Haydock, Solid State Phys. 35, 215 (1980)Google Scholar
  124. D.A. Drabold, O.F. Sankey, Phys. Rev. Lett. 70, 3631 (1993)Google Scholar
  125. R.N. Silver et al., J. Comp. Phys. 124, 115 (1996); A. Weiße, G. Wellein, A. Alvermann, H. Fehske, Rev. Mod. Phys. 78, 275 (2006)Google Scholar
  126. O.F. Sankey, D.A. Drabold, A. Gibson, Phys. Rev. B 50, 1376 (1994)Google Scholar
  127. M.T. Jones, M.L. Patrick, SIAM J. Matrix Anal. Appl. 14, 553 (1993)Google Scholar
  128. O. Schenk, M. Bollhofer, R.A. Romer, SIAM J. Sci. Computing 28, 963 (2006)Google Scholar
  129. J. Dong, D.A. Drabold, Phys. Rev. Lett. 80, 1928 (1998)Google Scholar
  130. B.R. Djordjevic, M.F. Thorpe, F. Wooten, Phys. Rev. B 52, 5685 (1995)Google Scholar
  131. T.A. Abtew, M. Zhang, D.A. Drabold, Phys. Rev. B 76, 045212 (2007)Google Scholar
  132. Y. Pan, F. Inam, M. Zhang, D.A. Drabold, Phys. Rev. Lett. 100, 206403 (2008)Google Scholar
  133. Y. Pan, M. Zhang, D.A. Drabold, J. Non. Cryst. Sol. 354, 3480 (2008)Google Scholar
  134. F. Urbach, Phys. Rev. 92, 1324 (1953)Google Scholar
  135. H. Aoki, J. Phys. C-Solid State Physics 16, L205 (1983)Google Scholar
  136. J.J. Ludlam, S.N. Taraskin, S.R. Elliott, D.A. Drabold, J. Phys. Cond. Matter 17, L321 (2005)Google Scholar
  137. G.H. Wannier, Phys. Rev. 52, 191 (1937)Google Scholar
  138. E. Prodan, W. Kohn, Proc. Nat. Acad. Sci. 102, 11635 (2005)Google Scholar
  139. L. Pauling, The Nature of the Chemical Bond 3th edn. (Cornell University Press, Ithaca, 1960)Google Scholar
  140. N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)Google Scholar
  141. S.F. Boys, Rev. Mod. Phys. 32, 296 (1960)Google Scholar
  142. U. Stephan, R.M. Martin, D.A. Drabold, Phys. Rev. B 62, 6885 (2000)Google Scholar
  143. P.L. Silvestrelli et al., Solid State Comm. 107, 7 (1998)Google Scholar
  144. U. Stephan, D.A. Drabold, Phys. Rev. B 57, 6391 (1998)Google Scholar
  145. W. Kohn, Phys. Rev. 115, 809 (1959)Google Scholar
  146. X. Zhang, D.A. Drabold, Phys. Rev. B 63, 233109 (2001)Google Scholar
  147. L. He, D. Vanderbilt, Phys. Rev. Lett. 86, 5341 (2001)Google Scholar
  148. S.N. Taraskin, D.A. Drabold, S.R. Elliott, Phys. Rev. Lett. 88, 196405 (2002)Google Scholar
  149. J. Ziman, Models of Disorder: The theoretical physics of homogeneously disordered systems (Cambridge University Press, Cambridge, 1979), pp. 456–457Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Trinity CollegeCambridgeUK
  2. 2.Clare Hall, Herschel RoadCambridgeUK
  3. 3.Dept. of Physics and Astronomy, Ohio UniversityAthensUSA

Personalised recommendations