Skip to main content
Log in

Adsorption and dissociation of molecular hydrogen on the (0001) surface of double hexagonal close packed americium

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Hydrogen molecule adsorption on the (0001) surface of double hexagonal packed americium has been studied in detail within the framework of density functional theory using a full-potential all-electron linearized augmented plane wave plus local orbitals method (FP-L/APW+lo). Weak molecular hydrogen adsorptions were observed. Adsorption energies were optimized with respect to the distance of the adsorbates from the surface for three approach positions at three adsorption sites, namely t1 (one-fold top), b2 (two-fold bridge), and h3 (three-fold hollow) sites. Adsorption energies were computed at the scalar-relativistic level (no spin-orbit coupling NSOC) and at the fully relativistic level (with spin-orbit coupling SOC). The most stable configuration corresponds to a horizontal adsorption with the molecular approach being perpendicular to a lattice vector. The surface coverage is equivalent to one-fourth of a monolayer (ML), with the adsorption energies at the NSOC and SOC theoretical levels being 0.0997 eV and 0.1022 eV, respectively. The respective distance of the hydrogen molecule from the surface and hydrogen-hydrogen distance was found to be 2.645 Å and 0.789 Å, respectively. The work functions decreased and the net magnetic moments remained almost unchanged in all cases compared with the corresponding quantities of bare dhcp Am (0001) surface. The adsorbate-substrate interactions have been analyzed in detail using the partial charges inside the muffin-tin spheres, difference charge density distributions, and the local density of states. The effects of adsorption on the Am 5f electron localization-delocalization characteristics have been discussed. Reaction barrier for the dissociation of hydrogen molecule has been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • http://nobelprize.org/nobel_prizes/chemistry/laureates/2007/chemadv07.pdf

  • J.J. Katz, G.T. Seaborg, L.R. Morss, The Chemistry of the Actinide Elements (Chapman and Hall, 1986); Transuranium Elements: A Half Century, edited by L.R. Morss, J. Fuger (American Chemical Society, Washington, D.C., 1992); The Chemistry of the Actinide and Transactinide Elements, edited by L.R. Morss, N.M. Edelstein, J. Fuger, J.J. Katz, Hon (Springer, New York, 2006), Vols. 1–5

  • Actinides 2005-Basic Science, Applications, and Technology, edited by L. Soderholm, J.J. Joyce, M.F. Nicol, D.K. Shuh, J.G. Tobin, Proceedings of the Materials Research Society 802 (2004)

  • Actinides 2005-Basic Science, Applications, and Technology, edited by J.L. Sarrao, A.J. Schwartz, M.R. Antonio, P.C. Burns, R.G. Haire, H. Nitsche, Proceedings of the Materials Research Society 893 (2005); Actinides 2006-Basic Science, Applications, and Technology, edited by K.J.M. Blobaum, E.A. Chandler, L. Havela, M.B. Maple, M.P. Neu, Proceedings of the Materials Research Society 986 (2006)

  • Plutonium Futures, The Science, edited by K.K.S. Pillay, K.C. Kim, American Institute of Physics Conference Proceedings 532 (2000); Plutonium Futures, The Science, edited by G.D. Jarvinen, American Institute of Physics Conference Proceedings 673 (2003)

  • A.M. Boring, J.L. Smith, in Challenges in Plutonium Science, Los Alamos Science (2000), Vol. 1, p. 90

  • Advances in Plutonium Chemistry 1967–2000, American Nuclear Society, La Grange, Illinois and University Research Alliance, Amarillo, edited by D. Hoffman, Texas (2002)

  • M.J. Fluss, D.E. Hobart, P.G. Allen, J.D. Jarvinen, Proceedings of the Plutonium Futures – The Science 2006 Conference, J. Alloys and Compounds 444–445 (2007)

  • G.T. Seaborg, W.D. Loveland, in The Elements beyond Uranium (John Wiley & Sons, Inc. 1990), p. 17

  • S.Y. Savrasov, K. Haule, G. Kotliar, Phys. Rev. Lett. 96, 036404 (2006)

    Google Scholar 

  • S. Heathman, R.G. Haire, T. Le Bihan, A. Lindbaum, K. Litfin, Y. Méresse, H. Libotte, Phys. Rev. Lett. 85, 2961 (2000)

    Google Scholar 

  • G.H. Lander, J. Fuger, Endeavour 13, 8 (1989)

    Google Scholar 

  • H.L. Skriver, O.K. Andersen, B. Johansson, Phys. Rev. Lett. 41, 42 (1978)

    Google Scholar 

  • J.R. Naegele, L. Manes, J.C. Spirlet, W. Müller, Phys. Rev. Lett. 52, 1834 (1984)

    Google Scholar 

  • A. Lindbaum, S. Heathman, K. Litfin, Y. Méresse, R.G. Haire, T. Le Bihan, H. Libotte, Phys. Rev. B 63, 214101 (2001)

    Google Scholar 

  • M. Pénicaud, J. Phys. Cond. Matt. 14, 3575 (2002); M. Pénicaud, J. Phys. Cond. Matt. 17, 257 (2005)

    Google Scholar 

  • P. Sõderlind, R. Ahuja, O. Eriksson, B. Johansson, J.M. Wills, Phys. Rev. B 61, 8119 (2000); P. Sõderlind, A. Landa, Phys. Rev. B 72, 024109 (2005)

    Google Scholar 

  • P.G. Huray, S.E. Nave, R.G. Haire, J. Less-Com. Met. 93, 293 (1983)

  • T. Gouder, P.M. Oppeneer, F. Huber, F. Wastin, J. Rebizant, Phys. Rev. B 72, 115122 (2005)

    Google Scholar 

  • L.E. Cox, J.W. Ward, R.G. Haire, Phys. Rev. B 45, 13239 (1992)

    Google Scholar 

  • O. Eriksson, J.M. Wills, Phys. Rev. B 45, 3198 (1992)

    Google Scholar 

  • A.L. Kutepov, S.G. Kutepova, J. Magn. Magn. Mat. 272–276, e329 (2004)

  • A. Shick, L. Havela, J. Kolorenc, V. Drchal, T. Gouder, P.M. Oppeneer, Phys. Rev. B 73, 104415 (2006)

    Google Scholar 

  • S.Y. Savrasov, G. Kotliar, E. Abrahams, Nature 410, 793 (2001); G. Kotliar, D. Vollhardt, Phys. Today 57, 53 (2004); X. Dai, S.Y. Savrasov, G. Kotliar, A. Migliori, H. Ledbetter, E. Abrahams, Science 300, 953 (2003)

  • B. Johansson, A. Rosengren, Phys. Rev. B 11, 2836 (1975)

    Google Scholar 

  • J.L. Smith, R.G. Haire, Science 200, 535 (1978)

    Google Scholar 

  • J.C. Griveau, J. Rebizant, G.H. Lander, G. Kotliar, Phys. Rev. Lett. 94, 097002 (2005)

    Google Scholar 

  • D. Gao, A.K. Ray, Eur. Phys. J. B 50, 497 (2006); D. Gao, A.K. Ray, MRS Fall 2005 Symp. Proc. 893, 39 (2006); D. Gao, A.K. Ray, Surf. Sci. 600, 4941 (2006); D. Gao, A.K. Ray, Eur. Phys. J. B 55, 13 (2007); D. Gao, A.K. Ray, MRS Fall 2005 Symp. Proc. 893, 39 (2006); D. Gao, A.K. Ray, Surf. Sci. 600, Phys. Rev. B 77, 035123 (2008)

  • P.P. Dholabhai, R. Atta-Fynn, A.K. Ray, Eur. Phys. J. B 61, 261 (2008); P.P. Dholabhai, A.K. Ray, Physica B 403, 4269 (2008)

    Google Scholar 

  • R. Atta-Fynn, A.K. Ray, Physica B 400, 307 (2007); R. Atta-Fynn, A.K. Ray, Phys. Rev. B 75, 195112 (2007); R. Atta-Fynn, A.K. Ray, Phys. Rev. B 77, 085105 (2008), and references therein.

  • P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

  • J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Google Scholar 

  • P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal properties (Vienna University of Technology, Austria, 2001)

  • D.D. Koelling, B.N. Harmon, J. Phys. C 10, 3107 (1977)

    Google Scholar 

  • J. Kunes, P. Novak, R. Schmid, P. Blaha, K. Schwarz, Phys. Rev. B 64 153102 (2001)

    Google Scholar 

  • F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Google Scholar 

  • R.W.G. Wyckoff, Crystal Structures (Wiley, New York, 1963), Vol. 1

  • F. Wagner, Th. Laloyaux, M. Scheffler, Phys. Rev. B 57, 2102 (1998); J.L.F. Da Silva, C. Stampfl, M. Scheffler, Surf. Sci. 600, 703 (2006)

    Google Scholar 

  • B.G. Briner, M. Doering, H.-P. Rust, A.M. Bradshaw, Phys. Rev. Lett. 78, 1516 (1997)

    Google Scholar 

  • S.Y. Liem, J.H.R. Clarke, G. Kresse, Comp. Mat. Sci. 17, 133 (2000)

    Google Scholar 

  • G. Katz, R. Kosloff, Y. Zeiri, J. Chem. Phys. 120, 3931 (2004)

    Google Scholar 

  • M.N. Huda, A.K. Ray. Int. J. Quant. Chem. 105, 280 (2005)

    Google Scholar 

  • A. Kokalj, J. Mol. Graphics Modeling 17, 176 (1999), code available from http://www.xcrysden.org

  • T.C. Leung, C.L. Kao, W.S. Su, T.C. Leung, C.L. Kao, W.S. Su, Phys. Rev. B 68, 195408 (2003)

    Google Scholar 

  • A. Nojima, K. Yamashita, Surf. Sci. 601, 3003 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dholabhai, P., Ray, A. Adsorption and dissociation of molecular hydrogen on the (0001) surface of double hexagonal close packed americium. Eur. Phys. J. B 67, 183–192 (2009). https://doi.org/10.1140/epjb/e2009-00031-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00031-9

PACS

Navigation