Advertisement

The European Physical Journal B

, Volume 67, Issue 3, pp 445–458 | Cite as

Fitness, chance, and myths: an objective view on soccer results

  • A. HeuerEmail author
  • O. Rubner
Interdisciplinary Physics Regular Article

Abstract

We analyze the time series of soccer matches in a model-free way using data for the German soccer league (Bundesliga). We argue that the goal difference is a better measure for the overall fitness of a team than the number of points. It is shown that the time evolution of the table during a season can be interpreted as a random walk with an underlying constant drift. Variations of the overall fitness mainly occur during the summer break but not during a season. The fitness correlation shows a long-time decay on the scale of a quarter century. Some typical soccer myths are analyzed in detail. It is shown that losing but no winning streaks exist. For this analysis ideas from multidimensional NMR experiments have been borrowed. Furthermore, beyond the general home advantage there is no statistically relevant indication of a team-specific home fitness. Based on these insights a framework for a statistical characterization of the results of a soccer league is introduced and some general consequences for the prediction of soccer results are formulated.

PACS

89.20.-a Interdisciplinary applications of physics 02.50.-r Probability theory, stochastic processes, and statistics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Ben-Naim, S. Redner, F. Vazquez, Europhys. Lett. 77, 30005 (2007)Google Scholar
  2. E. Ben-Naim, N.W. Hengartner, Phys. Rev. E 76, 026106 (2007)Google Scholar
  3. J. Wesson, The Science of Soccer (Institute of Physics Publishing, 2002)Google Scholar
  4. M. Tolan, M. Paulus, R. Fendt, J. Stolze, preprint (2007)Google Scholar
  5. E. Bittner, A. Nussbaumer, W. Janke, M. Weigel, Europhys. Lett. 78, 58002 (2007)Google Scholar
  6. R. Mantegna, H. Stanley, Nature 376, 46 (1995)Google Scholar
  7. L. Malacarne, R. Mendes, Physica A 286, 391 (2000)Google Scholar
  8. D. Gembris, J. Taylor, D. Suter, Nature 417, 506 (2002)Google Scholar
  9. A. Lee, Chance 10, 15 (1997)Google Scholar
  10. M. Dixon, S. Coles, Appl. Statist. 46, 265 (1997)Google Scholar
  11. M. Dixon, M. Robinson, The Statistician 47, 523 (1998)Google Scholar
  12. H. Rue, O. Salvesen, The Statistician 49, 399 (2000)Google Scholar
  13. R. Koning, The Statistician 49, 419 (2000)Google Scholar
  14. S. Dobson, J. Goddard, Euro. J. Operational Res. 148, 247 (2003)Google Scholar
  15. N. Hirotsu, M. Wright, J. Quantitative Analysis in Sports 2, 1 (2006)Google Scholar
  16. K. Schmidt-Rohr, H.W. Spiess, Phys. Rev. Lett. 66, 3020 (1991)Google Scholar
  17. A. Heuer, M. Wilhelm, H. Zimmermann, H.W. Spiess, Phys. Rev. Lett. 75, 2851 (1995)Google Scholar
  18. R. Boehmer, G. Hinze, G. Diezemann, B. Geil, H. Sillescu, Europhys. Lett. 36, 55 (1996)Google Scholar
  19. S. Stigler, Statistics on the Table. The History of Statistical Concepts and Methods (Harvard University Press, 2002)Google Scholar
  20. J. Goddard, I. Asimakopoulos, J. Forecasting 23, 51 (2004)Google Scholar
  21. S. Dobson, J. Goddard (2001), http://citeseer.ist.psu.edu/426358.htmlGoogle Scholar
  22. J. Atkinson, Psychological Rev. 359 (1957)Google Scholar
  23. N. Hirotsu, M. Wright, The Statistician 52, 591 (2003)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.University of Münster, Institute of Physical ChemistryMünsterGermany

Personalised recommendations