The European Physical Journal B

, Volume 67, Issue 2, pp 245–250 | Cite as

Numerical simulation of coupling effect on electronic states in quantum wires

  • A. Bouazra
  • S. Abdi-Ben Nasrallah
  • A. Poncet
  • Y. Bouazra
  • M. Said
Computational Methods


In this paper, the Schrödinger equation is solved for approximation of the ground state energies and associated wave functions of carriers confined in a rectangular semiconductor (SC) quantum wire embedded in a SiO2 matrix. The problem was treated with the effective one band Hamiltonian. The finite difference scheme was used for the discretization of 2D Schrödinger equation and LAPACK package to resolve the band matrix. The energy levels were determined and the coupling between quantum wires was investigated. The effect on energies and relative wave functions of quantum wires number, size and separation was studied. The results obtained show that the energy levels can be importantly modified and controlled by these parameters. The interaction is manifested by a reduction in energies and an increase in the peak value of the wave function of the higher energy wire. This study offers a fast and inexpensive way to check device designs and processes and can be used in diverse device applications.


73.21.Hb Quantum wires 2.60.Cb Numerical simulation; solution of equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D. Bimberg, Semicond. 33, 951 (1999)Google Scholar
  2. L. Esaki, T. Su, IBM J. Res. Developm. 14, 61 (1970)Google Scholar
  3. M. Henini, A. Patanè, A. Polimeni, A. Levin, L. Eaves, P.C. Main, G. Hill, Microelectronis Journal 33, 313 (2002)Google Scholar
  4. Q. Zhu, F. Karlsson, A. Rudra, E. Pelucchi, E. Kapon, Physica E 40, 1815 (2008)Google Scholar
  5. E.P. Pokatilov, V.A. Fonoberov, S.N. Balaban, V.M. Fomin, J. Phys. Condens. Matter 12, 9037 (2000)Google Scholar
  6. M. Califano, P. Harrison, Phys. Rev. B 61, 10959 (2000)Google Scholar
  7. J. Phillips, P. Bhattacharya, S.W. Kennedy, D.W. Beekman, M. Dutta, IEEE J. Quant. Elec. 35, 936 (1999)Google Scholar
  8. Z.-G. Wang, Y.-H. Chen, F.-Q. Liu, B. Xu, J. Crist. Growth 227, 228, 1132 (2001)Google Scholar
  9. A. Endoh, S. Sasa, H. Arimoto, S. Muto, J. Appl. Phys. 86, N11 6249 (1999)Google Scholar
  10. S. Yin, Z.Z. Sun, J. Lu, X.R. Wang, Appl. Phys. Lett. 88, 223110 (2006)Google Scholar
  11. J. Lu, S. Yin, L.M. Peng, Z.Z. Sun, X.R. Wang, Appl. Phys. Lett. 90, 052109 (2007)Google Scholar
  12. Y. Huang, C.M. Lieber, Pure. Appl. Chem. 76, 2051 (2004)Google Scholar
  13. J. Hahm, C.M. Lieber, Nano. Lett. 4, 51 (2004)Google Scholar
  14. Y. Gu, E.-S. Kwak, J.L. Lensch, J.E. Allen, T.W. Odom, L.J. Lohon, Appl. Phys. Lett. 87, 043111 (2005)Google Scholar
  15. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421, 241 (2003)Google Scholar
  16. D. El-Moghraby, R.G. Johnson, P. Harrison, Comput. Phys. Commun. 150, 235 (2003)Google Scholar
  17. M. Arfaoui, L. Bouzaïene, M. Fliyou, L. Sfaxi, H. Maaref, Solar Ener. Mater. & Solar Cel. 90, 1371 (2006)Google Scholar
  18. S. Yin, Z.Z. Sun, J. Lu, X.R. Wang, Appl. Phys. Lett. 88, 233110 (2006)Google Scholar
  19. S. Abdi-Ben Nasrallah, N. Sfina, M. Said, Eur. Phys. J. B 47, 167 (2005)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. Bouazra
    • 1
  • S. Abdi-Ben Nasrallah
    • 1
  • A. Poncet
    • 2
  • Y. Bouazra
    • 3
  • M. Said
    • 1
  1. 1.Unité de Recherche de Physique des Solides, Département de Physique, Faculté des Sciences de MonastirMonastirTunisia
  2. 2.Institut des Nanotechnologies de Lyon (INL, UMR 5270)Villeurbanne CedexFrance
  3. 3.Unité de Recherche de Physique quantique, Département de Physique, Faculté des Sciences de MonastirMonastirTunisia

Personalised recommendations