Skip to main content

Advertisement

Log in

Curvature and external electric field effects on the persistent current in chiral toroidal carbon nanotubes

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Taking into account the intrinsic curvature, we calculate the persistent currents (Ipcs) in chiral toroidal carbon nanotubes (TCNs) by developing the supercell approach. It is shown that in the presence of curvature, the typical current (Ity) oscillates with the unit cell number (P) and tends to be zero, while it damps exponentially in the absence of curvature. Due to the curvature effects, especially, a paramagnetism-diamagnetism transition is observed in chiral TCNs, depending on the ring diameter and chirality. In addition, the effect of external electric field energy (Eef) on persistent current is also explored. It is shown that in the presence of electric field, Ity vary unmonotonously with Eef. A pronounced peak of Ity is obtained at high Eef region. By modulating the value of Eef, a paramagnetism-diamagnetism or diamagnetism- paramagnetism transition is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Liu, H. Dai, J.H. Hafner, D.T. Colbert, R.E. Smalley, S.J. Tans, C. Dekker, Nature 385, 780 (1997)

    Google Scholar 

  • R. Matel, H.R. Shea, P. Avouris, Nature 398, 299 (1999)

    Google Scholar 

  • M. Sano, A. Kamino, J. Okamura, S. Shinkai, Science 293, 1299 (2001)

    Google Scholar 

  • H.R. Shea, R. Martel, Ph. Avouris, Phys. Rev. Lett. 84, 4441 (2000)

    Google Scholar 

  • H. Watanabe, C. Manabe, T. Shigematsu, M. Shimizu, Appl. Phys. Lett. 78, 2928 (2001)

    Google Scholar 

  • M.F. Lin, R.B. Chen, F.L. Shyu, Solid State Commun. 107, 227 (1998)

    Google Scholar 

  • D-H. Oh, J.M. Park, K.S. Kim, Phys. Rev. B 62, 1600 (2000)

    Google Scholar 

  • A. Latgé, C.G. Rocha, L.A. Wanderley, M. Pacheco, P. Orellana, Z. Barticevic, Phys. Rev. B 67, 155413 (2003)

    Google Scholar 

  • Z.H. Zhang, Z.Q. Yang, X. Wang, J.H. Yuan, H. Zhang, M. Qiu, J.C. Peng, J. Phys.: Condens. Matter 17, 4111 (2005)

    Google Scholar 

  • C.P. Liu, J.W. Ding, J. Phys.: Condens. Matter 18, 4077 (2006)

    Google Scholar 

  • M.F. Lin, D.S. Chuu, Phys. Rev. B 57, 6731 (1998)

    Google Scholar 

  • L. Liu, G.Y. Guo, C.S. Jayanthi, S.Y. Wu, Phys. Rev. Lett. 88, 217206 (2002)

    Google Scholar 

  • S. Latil, S. Roche, A. Rubio, Phys. Rev. B 67, 165420 (2003)

    Google Scholar 

  • C.C. Tsai, F.L. Shyu, C.W. Chiu, C.P. Chang, R.B. Chen, M.F. Lin, Phys. Rev. B 70, 075411 (2004)

    Google Scholar 

  • R. Tamura, M. Ikuta, T. Hirahara, M. Tsukada, Phys. Rev. B 71, 045418 (2005)

    Google Scholar 

  • Z.H. Zhang, J.H. Yuan, M. Qiu, J.C. Peng, F.L. Xiao, J. Appl. Phys. 99, 104311 (2006)

    Google Scholar 

  • M.F. Lin, Physica B 269, 43 (1999)

    Google Scholar 

  • C.P. Liu, J.W. Ding, H.B. Chen, J. Phys.: Condens. Matter 20, 015206 (2008)

    Google Scholar 

  • M.F. Lin, J. Phys. Soc. Jpn 62, 2218 (1998)

  • M.F. Lin, Phys. Rev. B 58, 3629 (1998)

    Google Scholar 

  • F.L. Shyu, Phys. Rev. B 72, 045424 (2005)

    Google Scholar 

  • H.R. Shea, R. Martel, Ph. Avouris, Phys. Rev. Lett. 84, 4441 (2000)

    Google Scholar 

  • H. Watanabe, C. Manabe, T. Shigematsu, M. Shimizu, Appl. Phys. Lett.78, 2928 (2001)

    Google Scholar 

  • G. Cuniberti, J. Yi, M. Porto, Appl. Phys. Lett. 81, 850 (2002)

    Google Scholar 

  • Y.Y. Chou, G.-Y. Guo, L. Liu, C.S. Jayanthi, S.Y. Wu, J. Appl. Phys. 96, 2249 (2004)

    Google Scholar 

  • C.P. Liu, Z.X. Guo, J.W. Ding, X.H. Yan, Physica B 365, 109 (2005)

    Google Scholar 

  • J.F. Colomer, L. Henrard, E. Flahaut, G.V. Tendeloo, A.A. Lucas, P. Lambin, Nano Lett. 3, 685 (2003)

  • H. Yu, Q.F. Zhang, G.H. Luo, F. Wei, Appl. Phys. Lett. 89, 223106 (2006)

    Google Scholar 

  • S. Froyen, W.A. Harrison, Phys. Rev. B 20, 2420 (1979); W.A. Harrison, Phys. Rev. B 24, 5835 (1981)

    Google Scholar 

  • J.C. Charlier, P. Lambin, T.W. Ebbesen, Phys. Rev. B 58, 54 R8377 (1996)

    Google Scholar 

  • R. Tamura, M. Ikuta, T. Hirahara, M. Tsukada, Phys. Rev. B 71, 045418 (2005)

    Google Scholar 

  • C.G. Rocha, M. Pacheco, Z. Barticevic, A. Latgé, Phys. Rev. B 70, 233402 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, N., Ding, J., Chen, H. et al. Curvature and external electric field effects on the persistent current in chiral toroidal carbon nanotubes. Eur. Phys. J. B 67, 71–75 (2009). https://doi.org/10.1140/epjb/e2009-00003-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00003-1

PACS

Navigation