Abstract
An ecosystem containing three interacting species is studied using both Mean Field approach and Kinetic Monte Carlo simulations on a lattice substrate. The so called 3rd order LLV model involves birth, death and reaction processes with 3rd order nonlinearities and feedbacks. At the mean field level this system exhibits conservative oscillations; the analytic form of the constant of motion is presented. The stochastic simulations show that the density oscillations disappear for sufficiently large lattices, while they are present locally, on small lattice windows. Introduction of mixing via long range migration in the two reacting species changes this picture. For small migration rates p, the behavior remains as with p = 0 and the system is divided into local asynchronous oscillators. As p increases the system passes through a phase transition and exhibits a weak disorder limit cycle through a supercritical Hopf-like bifurcation. The amplitude of the limit cycle depends on the rate p, on the range of migration r and on the system kinetic rates k1, k2 and k3.
Similar content being viewed by others
References
A.J. Lotka, Proc. Natl. Acad. Sci. USA 6, 410 (1920)
V. Volterra, Variation and fluctuation of a number of individuals in animal species living together, Translation In: R.N. Chapman: Animal Ecology (McGraw Hill, New York, 1931), pp. 409–448
J.D. Murray, Mathematical Biology (Springer, 1993)
R.M. May, Stability and Complexity in Model Ecosystems (Cambridge University Press, Cambridge, 1974)
R.M. May, Nature 269, 471 (1976)
L. Stone, Nature 365, 617 (1993)
B. Blasius, A. Huppert, L. Stone, Nature 399, 354 (1999)
B. Blasius, R. Neff, F. Beck, U. Luttge, Proc. R. Soc. London B 266, 93 (1999)
D.J. Murrell, American Naturalist 166, 354 (2005)
F. Saffre, J.L. Deneubourg, J. Theor. Biol. 214, 441 (2002)
J.L. Deneubourg, A. Lioni, C. Detrain, Biol. Bull. 202, 262 (2002)
G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977)
G. Ertl, R. Norton, J. Rustig, Phys. Rev. Lett. 49, 117 (1982)
G. Ertl, Science 254, 1750 (1991)
A. Provata, G. Nicolis, F. Baras, J. Chem. Phys. 110, 8361 (1999)
L. Frachebourg, P.L. Krapivsky, E. Ben-Naim, Phys. Rev. E 54, 6186 (1996)
G.A. Tsekouras, A. Provata, Phys. Rev. E 65, 056602 (2001)
A. Provata, G.A. Tsekouras, Phys. Rev. E 67, 056602 (2003)
A. Tretyakov, A. Provata, G. Nicolis, J. Phys. Chem. 99, 2770 (1995)
R. Imbihl, G. Ertl, Chem. Rev. 95, 697 (1995)
V.P. Zhdanov, Phys. Rev. E 59, 6292 (1999)
H. Rose, H. Hempel, L. Schimanksy-Geier, Physica A 206, 421 (1994)
G. Nicolis, I. Prigogine, Exploring Complexity (Freeman, New York, 1989)
G. Nicolis, Introduction to Nonlinear Science (Cambridge University Press, Cambridge, 1995)
E. Ben-Jacob, I. Cohena, I. Goldinga, D.L. Gutnickb, M. Tcherpakovb, D. Helbinga, I.G. Rona, Physica A 282, 247 (2000)
E. Ben-Jacob, H. Levine, Nature 409, 985 (2001)
T. Reichenbach, M. Mobilia, E. Frey, Phys. Rev. E 74, 051907 (2006)
D.T. Gillespie, J. Phys. Chem. 81, 2340 (1977)
R.M. Ziff, E. Gulari, Y. Barshad, Phys. Rev. Lett. 56, 2553 (1968)
E.V. Albano, Comp. Chem. Phys. 113, 10279 (2000)
A. Efimov, A. Shabunin, A. Provata (submitted)
W.G. Wilson, E. McCauley, A.M. De Roos, Bull. Math. Biol. 57, 507 (1995)
A.M. De Roos, E. McCauley, W.G. Wilson, Theor. Pop. Biol. 53, 108 (1998)
G. Szabó, A. Szolnoki, R. Izsák, J. Phys. A: Math. Gen. 37, 2599 (2004)
D.H. Zanette, Phys. Rev. E 64, 050901 (2001)
M. Kuperman, G. Abramson, Phys. Rev. Lett. 86, 2909 (2001)
D.H. Zanette, M. Kuperman, Physica A 309, 445 (2002)
S.H. Strogatz, Non-linear Dynamics and Chaos (West-view, New York, 1994); A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization (Cambridge University Press, Cambridge, 2001)
M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 76, 1804 (1996)
A. Shabunin, V. Astakov, J. Kurths, Phys. Rev. E 72, 016218 (2005)
A. Neiman, A. Silchenko, V. Anishchenko, L. Schimansky-Geier Phys. Rev. E 58, 7118 (1998)
K. Wood, C. Van de Broeck, R. Kawai, K. Lindenberg, Phys. Rev. Lett. 96, 145701 (2006); K. Wood, C. Van de Broeck, R. Kawai, K. Lindenberg, Phys. Rev. E 75, 041107 (2007)
A. Shabunin, V. Astakhov, V. Demidov, A. Provata, F. Baras, G. Nicolis, V. Anishchenko, Chaos, Solitons and Fractals 15, 395 (2003)
S. Clar, B. Drossel, F. Schwabl, J. Phys.: Cond. Mat. 8, 6803 (1996)
K. Schenk, B. Drossel, F. Schwabl, Phys. Rev. E 65, 026135 (2002)
N. Kouvaris, A. Provata, Nonlinear Phenomena in Complex Systems 11, 259 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kouvaris, N., Provata, A. Dissipative oscillations in spatially restricted ecosystems due to long range migration. Eur. Phys. J. B 66, 97–106 (2008). https://doi.org/10.1140/epjb/e2008-00373-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1140/epjb/e2008-00373-8