Skip to main content
Log in

Dissipative oscillations in spatially restricted ecosystems due to long range migration

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

An ecosystem containing three interacting species is studied using both Mean Field approach and Kinetic Monte Carlo simulations on a lattice substrate. The so called 3rd order LLV model involves birth, death and reaction processes with 3rd order nonlinearities and feedbacks. At the mean field level this system exhibits conservative oscillations; the analytic form of the constant of motion is presented. The stochastic simulations show that the density oscillations disappear for sufficiently large lattices, while they are present locally, on small lattice windows. Introduction of mixing via long range migration in the two reacting species changes this picture. For small migration rates p, the behavior remains as with p = 0 and the system is divided into local asynchronous oscillators. As p increases the system passes through a phase transition and exhibits a weak disorder limit cycle through a supercritical Hopf-like bifurcation. The amplitude of the limit cycle depends on the rate p, on the range of migration r and on the system kinetic rates k1, k2 and k3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.J. Lotka, Proc. Natl. Acad. Sci. USA 6, 410 (1920)

    Google Scholar 

  • V. Volterra, Variation and fluctuation of a number of individuals in animal species living together, Translation In: R.N. Chapman: Animal Ecology (McGraw Hill, New York, 1931), pp. 409–448

  • J.D. Murray, Mathematical Biology (Springer, 1993)

  • R.M. May, Stability and Complexity in Model Ecosystems (Cambridge University Press, Cambridge, 1974)

  • R.M. May, Nature 269, 471 (1976)

  • L. Stone, Nature 365, 617 (1993)

  • B. Blasius, A. Huppert, L. Stone, Nature 399, 354 (1999)

    Google Scholar 

  • B. Blasius, R. Neff, F. Beck, U. Luttge, Proc. R. Soc. London B 266, 93 (1999)

    Google Scholar 

  • D.J. Murrell, American Naturalist 166, 354 (2005)

  • F. Saffre, J.L. Deneubourg, J. Theor. Biol. 214, 441 (2002)

    Google Scholar 

  • J.L. Deneubourg, A. Lioni, C. Detrain, Biol. Bull. 202, 262 (2002)

    Google Scholar 

  • G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977)

  • G. Ertl, R. Norton, J. Rustig, Phys. Rev. Lett. 49, 117 (1982)

    Google Scholar 

  • G. Ertl, Science 254, 1750 (1991)

  • A. Provata, G. Nicolis, F. Baras, J. Chem. Phys. 110, 8361 (1999)

    Google Scholar 

  • L. Frachebourg, P.L. Krapivsky, E. Ben-Naim, Phys. Rev. E 54, 6186 (1996)

    Google Scholar 

  • G.A. Tsekouras, A. Provata, Phys. Rev. E 65, 056602 (2001)

    Google Scholar 

  • A. Provata, G.A. Tsekouras, Phys. Rev. E 67, 056602 (2003)

    Google Scholar 

  • A. Tretyakov, A. Provata, G. Nicolis, J. Phys. Chem. 99, 2770 (1995)

    Google Scholar 

  • R. Imbihl, G. Ertl, Chem. Rev. 95, 697 (1995)

    Google Scholar 

  • V.P. Zhdanov, Phys. Rev. E 59, 6292 (1999)

    Google Scholar 

  • H. Rose, H. Hempel, L. Schimanksy-Geier, Physica A 206, 421 (1994)

    Google Scholar 

  • G. Nicolis, I. Prigogine, Exploring Complexity (Freeman, New York, 1989)

  • G. Nicolis, Introduction to Nonlinear Science (Cambridge University Press, Cambridge, 1995)

  • E. Ben-Jacob, I. Cohena, I. Goldinga, D.L. Gutnickb, M. Tcherpakovb, D. Helbinga, I.G. Rona, Physica A 282, 247 (2000)

    Google Scholar 

  • E. Ben-Jacob, H. Levine, Nature 409, 985 (2001)

    Google Scholar 

  • T. Reichenbach, M. Mobilia, E. Frey, Phys. Rev. E 74, 051907 (2006)

    Google Scholar 

  • D.T. Gillespie, J. Phys. Chem. 81, 2340 (1977)

    Google Scholar 

  • R.M. Ziff, E. Gulari, Y. Barshad, Phys. Rev. Lett. 56, 2553 (1968)

    Google Scholar 

  • E.V. Albano, Comp. Chem. Phys. 113, 10279 (2000)

    Google Scholar 

  • A. Efimov, A. Shabunin, A. Provata (submitted)

  • W.G. Wilson, E. McCauley, A.M. De Roos, Bull. Math. Biol. 57, 507 (1995)

    Google Scholar 

  • A.M. De Roos, E. McCauley, W.G. Wilson, Theor. Pop. Biol. 53, 108 (1998)

    Google Scholar 

  • G. Szabó, A. Szolnoki, R. Izsák, J. Phys. A: Math. Gen. 37, 2599 (2004)

    Google Scholar 

  • D.H. Zanette, Phys. Rev. E 64, 050901 (2001)

    Google Scholar 

  • M. Kuperman, G. Abramson, Phys. Rev. Lett. 86, 2909 (2001)

    Google Scholar 

  • D.H. Zanette, M. Kuperman, Physica A 309, 445 (2002)

  • S.H. Strogatz, Non-linear Dynamics and Chaos (West-view, New York, 1994); A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization (Cambridge University Press, Cambridge, 2001)

  • M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 76, 1804 (1996)

    Google Scholar 

  • A. Shabunin, V. Astakov, J. Kurths, Phys. Rev. E 72, 016218 (2005)

    Google Scholar 

  • A. Neiman, A. Silchenko, V. Anishchenko, L. Schimansky-Geier Phys. Rev. E 58, 7118 (1998)

  • K. Wood, C. Van de Broeck, R. Kawai, K. Lindenberg, Phys. Rev. Lett. 96, 145701 (2006); K. Wood, C. Van de Broeck, R. Kawai, K. Lindenberg, Phys. Rev. E 75, 041107 (2007)

    Google Scholar 

  • A. Shabunin, V. Astakhov, V. Demidov, A. Provata, F. Baras, G. Nicolis, V. Anishchenko, Chaos, Solitons and Fractals 15, 395 (2003)

    Google Scholar 

  • S. Clar, B. Drossel, F. Schwabl, J. Phys.: Cond. Mat. 8, 6803 (1996)

    Google Scholar 

  • K. Schenk, B. Drossel, F. Schwabl, Phys. Rev. E 65, 026135 (2002)

    Google Scholar 

  • N. Kouvaris, A. Provata, Nonlinear Phenomena in Complex Systems 11, 259 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Provata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouvaris, N., Provata, A. Dissipative oscillations in spatially restricted ecosystems due to long range migration. Eur. Phys. J. B 66, 97–106 (2008). https://doi.org/10.1140/epjb/e2008-00373-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00373-8

PACS

Navigation