Epidemic threshold and phase transition in scale-free networks with asymmetric infection

  • G. Yan
  • Z.-Q. Fu
  • G. Chen
Interdisciplinary Physics


We study the SIS epidemic dynamics on scale-freeweighted networks with asymmetric infection, by both analysis andnumerical simulations, with focus on the epidemic threshold aswell as critical behaviors. It is demonstrated that the asymmetryof infection plays an important role: we could redistribute theasymmetry to balance the degree heterogeneity of the network andthen to restore the epidemic threshold to a fnite value. On theother hand, we show that the absence of the epidemic threshold isnot so bad as commented previously since the prevalence grows veryslowly in this case and one could only protect a few vertices toprevent the diseases propagation.


89.75.-k Complex systems 89.75.Hc Networks and genealogical trees 


  1. R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 1 (2002)Google Scholar
  2. M.E.J. Newman, SIAM Review 45, 167 (2003)Google Scholar
  3. S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW (OxfordUniversity Press, Oxford, 2003)Google Scholar
  4. R. Pastor-Satorras, A. Vespignani, Evolution andStruc- ture of the Internet: A Statistical Physics Approach (Cam-bridge University Press, 2004)Google Scholar
  5. D.S. Callaway, M.E.J. Newman, S.H. Strogatz, D.J. Watts,Phys. Rev. Lett. 85, 5468 (2000)Google Scholar
  6. R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev. Lett.85, 4626 (2000)Google Scholar
  7. R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200(2001)Google Scholar
  8. R.M. May, A.L. Lloyd, Phys. Rev. E 64, 066112 (2001)Google Scholar
  9. M.E.J. Newman, Phys. Rev. E 66, 016128 (2002)Google Scholar
  10. M. Boguñá, R. Pastor-Satorras, A. Vespignani, Phys. Rev.Lett. 90, 028701 (2003)Google Scholar
  11. M.A. Serrano, M. Boguñá, Phys. Rev. Lett. 97, 088701(2006)Google Scholar
  12. N.T.J. Bailey, The Mathematical Theory of Infectious Diseases, 2nd edn.(Griffin, London, 1975); J.D. Murray, MathematicalBiology (Springer-Verlag, Berlin, 1993)Google Scholar
  13. S.R. White, in Proceeding of the Virus Bulletin Conference,Munich, 1998 Scholar
  14. F. Liljeros, C.R. Edling, L.A.N. Amaral, H.E. Stanley, Y. Aberg, Nature (London) 411, 907 (2001)Google Scholar
  15. H. Ebel, L.-I. Mielsch, S. Bornholdt, Phys. Rev. E 66,035103(R) (2002)Google Scholar
  16. M. Faloutsos, P. Faloutsos, C. Faloutsos, ACM ComputerCommunication Review 29, 251 (1999)Google Scholar
  17. L. Hufnage, D. Brockmann, T. Geisel, Proc. Natl. Acad.Sci. USA 101, 15124 (2004)Google Scholar
  18. V. Colizza, A. Barrat, M. Barthélemy, A. Vespignani,Proc. Natl. Acad. Sci. USA 103, 2015 (2006)Google Scholar
  19. A. Barrat, M. Barthélemy, R. Pastor-Satorras, A.Vespignani, Proc. Natl. Acad. Sci. USA 101, 3747 (2004)Google Scholar
  20. For too large or too small α, λkiwij may be larger than 1. Inthis case, it can be rescaled by a small constant, and dose notalter the results. In this paper we focus on the epidemicthreshold and set -2 ≤α≤2 in oursimulationsGoogle Scholar
  21. M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)Google Scholar
  22. R. Pastor-Satorras, A. Vespignani, in Handbook of Graphsand Networks: From the Genome to the Internet, edited by S.Bornholdt, H.G. Schuster (Wiley-VCH, Berlin, 2002), pp.113–132Google Scholar
  23. K.-I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, 278701(2001)Google Scholar
  24. R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 65,035108(R) (2002)Google Scholar
  25. V. Colizza, R. Pastor-Satorras, A. Vespignani, NaturePhys. 3, 276 (2007)Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaAnhuiP.R. China
  2. 2.Centre for Chaos and Complex Networks and Department of Electronic EngineeringCity University of Hong KongHong Kong SARP.R. China

Personalised recommendations