Skip to main content
Log in

Output stream of binding neuron with instantaneous feedback

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

An Erratum to this article was published on 22 April 2009

Abstract.

The binding neuron model [A.K. Vidybida,BioSystems 48, 263 (1998)] is inspired by numerical simulation of Hodgkin-Huxley-type point neuron [A.K. Vidybida,Biol. Cybern. 74, 539 (1996)], as well as by the leaky integrate-and-fire (LIF) model [J.P. Segundo, D. Perkel, H. Wyman, H. Hegstad, G.P. Moore,Kybernetic 4, 157 (1968)]. In the binding neuron, the trace of an input is remembered for a fixed period of time after which it disappears completely. This is in the contrast with the above two models, where the postsynaptic potentials decay exponentially and can be forgotten only after triggering. The finiteness of memory in the binding neuron allows one to construct fast recurrent networks for computer modeling [A.K. Vidybida,BioSystems 71, 205 (2003)]. Recently, [A.K. Vidybida,BioSystems 89, 160 (2007)], the finiteness is utilized for exact mathematical description of the output stochastic process if the binding neuron is driven with the Poisson input stream. In this paper, it is expected that every output spike of single neuron is immediately fed back into its input. For this construction, externally fed with Poisson stream, the output stream is characterized in terms of interspike interval (ISI) probability density distribution if the neuron has threshold 2. For higher thresholds, the distribution is calculated numerically. The distributions are compared with those found for binding neuron without feedback, and for leaky integrator. It is concluded that the feedback presence can radically alter spiking statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.K. Vidybida,BioSystems 48, 263 (1998)

  • A.K. Vidybida,Biol. Cybern. 74, 539 (1996)

  • J.P. Segundo, D. Perkel, H. Wyman, H. Hegstad, G.P. Moore, Kybernetic 4, 157 (1968)

  • A.K. Vidybida,BioSystems 71, 205 (2003)

  • A.K. Vidybida,BioSystems 89, 160 (2007)

  • R. Schmidt, Fundamentals of Neurophysiology (Springer, Berlin, 1975)

  • P. König, A.K. Engel, W. Singer,TINS 19, 130 (1996)

    Google Scholar 

  • M. Rudolph, A. Destexhe, J. Comput. Neurosci. 14, 239 (2003)

    Google Scholar 

  • J.J. Eggermont,Hearing Res. 56, 153 (1991)

  • P. König, N. Krüger, Biol. Cybern. 94, 325 (2006)

    Google Scholar 

  • V. Aroniadou-Anderjaska, M. Ennis, M.T. Shipley,J. Neurophysiol. 82, 489 (1999)

    Google Scholar 

  • R.A. Nicoll, C.E. Jahr,Nature 296, 441 (1982)

    Google Scholar 

  • A.Y. Khinchin,V.A. Steklov Inst. Math. Trudy 49, 1 (1955)

  • A.L. Hodgkin, A.F. Huxley,J. Physiol. 125, 221 (1952)

    Google Scholar 

  • N.S. Goel, N. Rychter-Dyn, J.R. Clay,J. theor. Biol. 34, 155 (1972)

    Google Scholar 

  • T. Britvina, J.J. Eggermont,Biol. Cybern. 96, 245 (2006)

  • H. Haken, Advanced Synergetics (Springer, Berlin, 1983)

  • W. Feller,An introduction to probability theory and its applications(John Wiley & Sons, NY, 1966), Vol. 2

  • H. Haken, Eur. Phys. J. B 18, 545 (2000)

    Google Scholar 

  • G.D. Smith,in Computational Cell Biology, edited by C.P. Fall, E.S. Marland, J.M. Wagnerand, J.J. Tyson (Springer, Singapore, 2002), pp. 285–319

  • M. Matsumoto, T. Nishimura,ACM Trans. Model. Comput. Simul. 8, 3 (1998)

    Google Scholar 

  • A.N. Burkitt,Biol. Cybern. 95, 1 (2006)

  • A.V. Holden,Models of the stochastic activity of neurons (Lecture Notes in Biomathematics 12, Springer, Berlin, 1976)

  • L.M. Ricciardi,Diffusion Processes and Related Topics in Biology (Lecture Notes in Biomathematics 14, Springer, Berlin, 1977)

  • H.C. Tuckwell,Introduction to theoretical neurobiology (Cambridge University Press, Cambridge, 1988)

  • H.C. Tuckwell,Stochastic processes in the neurosciences (Society for Industrial and Applied Mathematics, Philadelphia, 1989)

  • A. Kolmogoroff, Mathematische Annalen 104, 415 (1931)

    Google Scholar 

  • R. Miles,J. Physiol. 428, 61 (1990)

    Google Scholar 

  • B. Barbour,Neuron 11, 759 (1993)

  • P. Andersen, in Fidia Research Foundation Neuroscience Award Lectures(Raven Press, Ltd, New York, 1991), pp. 51–71

  • P. Andersen, M. Raastad, J.F. Storm,in Cold Spring Harbor Symposia on Quantitative Biology (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1990), pp. 81–86

  • A.K. Vidybida,Ukr. Math. J. 59, 1619 (2007)

    Google Scholar 

  • W.R. Softky, C. Koch,J. Neurosci. 13, 334 (1993)

  • D.M. MacKay, in Self-Organizing Systems, edited by M.C. Yovitts, G.T. Jacobi, G.D. Goldstein (Spartan Books, Washington, 1962), pp. 37–48

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Vidybida.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1140/epjb/e2009-00139-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidybida, A. Output stream of binding neuron with instantaneous feedback. Eur. Phys. J. B 65, 577 (2008). https://doi.org/10.1140/epjb/e2008-00360-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2008-00360-1

PACS.

Navigation