Communities recognition in the Chesapeake Bay ecosystem by dynamical clustering algorithms based on different oscillators systems

Abstract

We have recently introduced [Phys. Rev. E 75, 045102(R) (2007); AIP Conference Proceedings 965, 2007, p. 323] an efficient method for the detection and identification of modules in complex networks, based on the de-synchronization properties (dynamical clustering) of phase oscillators. In this paper we apply the dynamical clustering tecnique to the identification of communities of marine organisms living in the Chesapeake Bay food web. We show that our algorithm is able to perform a very reliable classification of the real communities existing in this ecosystem by using different kinds of dynamical oscillators. We compare also our results with those of other methods for the detection of community structures in complex networks.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P.C. de Ruiter, V. Wolters, J.C. Moore, K.O. Winemiller, Science 309, 68 (2005)

    Article  Google Scholar 

  2. 2.

    L. Danon, A. Diaz-Guilera, J. Duch, A. Arenas, J. Stat. Mechanics: Theory and Experiment P09008 (2005)

    Google Scholar 

  3. 3.

    V. Gudkovl, J.E. Johnson, S. Nussinov (2002), e-print arXiv: cond-mat/0209111; V. Gudkovl, S. Nussinov (2002), e-print arXiv:cond-mat/0209112; V. Gudkovl, V. Montealegre, S. Nussinov and Z. Nussinov (2007), e-print arXiv:0710.0550

  4. 4.

    S. Boccaletti, M. Ivanchenko, V. Latora, A. Pluchino, A. Rapisarda, Phys. Rev. E 75, 045102(R) (2007)

  5. 5.

    A. Pluchino, A. Rapisarda, V. Latora, AIP Conference Proceedings 965, 2007, p. 323

  6. 6.

    S. Boccaletti, J. Kurths, D.L. Valladares, G. Osipov, C.S. Zhou, Phys. Rep. 366, 1 (2002); S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  7. 7.

    M. Chavez, D. Hwang, A. Amann, H. Hentschel, N. Gand, S. Boccaletti, Phys. Rev. Lett. 94, 218701 (2005)

    Google Scholar 

  8. 8.

    M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002); M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  9. 9.

    D. Baird, R.E. Ulanowicz, Ecol. Mon. 59, 364, 329 (1989)

    Article  Google Scholar 

  10. 10.

    M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  11. 11.

    S. Fortunato, V. Latora, M. Marchiori, PRE, 70, 056104 (2004)

  12. 12.

    Y. Kuramoto, in International Symposium on Mathematical Problems in Theoretical Physics, Vol. 39 of Lecture Notes in Physics, edited by H. Araki (Springer-Verlag, Berlin, 1975)

    Google Scholar 

  13. 13.

    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984)

    Google Scholar 

  14. 14.

    S. H. Strogatz, Physica D 143, 1 (2000)

    MATH  Article  ADS  MathSciNet  Google Scholar 

  15. 15.

    A. Pluchino, V. Latora, A. Rapisarda, Int. J. Mod. Phys. C 16, 515 (2005)

    MATH  Article  ADS  Google Scholar 

  16. 16.

    R. Hegselmann, U. Krause, J.A.S.S.S. 5, 2 (2002)

    Google Scholar 

  17. 17.

    S. Fortunato, M. Barthlemy, PNAS 104, 36 (2007)

    Article  ADS  Google Scholar 

  18. 18.

    E.A. Leicht, M.E.J. Newman, Phys. Rev. Lett. 100, 118703 (2008)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Pluchino.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pluchino, A., Rapisarda, A. & Latora, V. Communities recognition in the Chesapeake Bay ecosystem by dynamical clustering algorithms based on different oscillators systems. Eur. Phys. J. B 65, 395–402 (2008). https://doi.org/10.1140/epjb/e2008-00292-8

Download citation

PACS

  • 89.75.Hc Networks and genealogical trees
  • 05.45.Xt Synchronization; coupled oscillators