The European Physical Journal B

, Volume 64, Issue 1, pp 35–42 | Cite as

Electronic and optical properties under pressure effect of alkali metal oxides

  • M. Moakafi
  • R. Khenata
  • A. Bouhemadou
  • H. Khachai
  • B. Amrani
  • D. Rached
  • M. Rérat
Article

Abstract

We report results of first-principles calculations for the electronic and optical properties under pressure effect of Li2O, Na2O, Ki2O and Rb2O compounds in the cubic antifluorite structure, using a full relativistic version of the full-potential augmented plane-wave plus local orbitals (FP-APW+lo) method based on density functional theory, within the local density approximation (LDA) and the generalized gradient approximation (GGA). Moreover, the alternative form of GGA proposed by Engel and Vosko (GGA-EV) is also used for band structure calculations. The calculated equilibrium lattices and bulk moduli are in good agreement with the available data. Band structure, density of states, and pressure coefficients of the fundamental energy gap are given. The critical point structure of the frequency dependent complex dielectric function is also calculated and analyzed to identify the optical transitions. The pressure dependence of the static optical dielectric constant is also investigated.

PACS

71.15.Ap Basis sets 78.40.Fy Semiconductors 78.20.Ci Optical constants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Constitution of Binary Alloys, edited by F.A. Shunk, 2nd Suppl. (McGraw-Hill, New York, 1969)Google Scholar
  2. 2.
    J.S. Esher, Semiconductors and Semimitals (Academic Press, New York 1981), 15, p. 195Google Scholar
  3. 3.
    C. Gosh, Phys. Thin Films-Photoemissive Materials 12, 75 (1982)Google Scholar
  4. 4.
    C.T. Campbell, J. Catal. 94, 436 (1985)CrossRefGoogle Scholar
  5. 5.
    P. Soukiassian, H.I. Starnberg, in Physics and Chemistry of Alkali Metal Adsorption, edited by H.P. Bonzel, A.M. Bradshaw, G. Ertl (Elsevier Amsterdam, 1989), p. 449Google Scholar
  6. 6.
    M. Jamal, G. Venugopal, M. Shareefuddin, M.N. Chary, Mat. Lett. 39, 28 (1999)CrossRefGoogle Scholar
  7. 7.
    K.I. Chao, S.H. Lee, K.H. Chao, D.W. Shin, Y.K. Sun, J. Power Sour. 163, 223 (2006)CrossRefGoogle Scholar
  8. 8.
    K.B. Lee, M.G. Beaver, H.S. Caram, S. Sircar, J. Power Sources 176, 312 (2008)CrossRefGoogle Scholar
  9. 9.
    H.K. Lee, J.-P. Shim, M.-J. Shim, S.-W. Kim, J.-S. Lee, Mat. Chem. Phys. 45, 243 (1996)CrossRefGoogle Scholar
  10. 10.
    S. Hull, T.W.D. Farley, W. Hayes, M.T. Hutchings, J. Nucl. Mater. 160, 125 (1988)CrossRefADSGoogle Scholar
  11. 11.
    Y. Oishi, Y. Kamwei, M. Akuyama, J. Nucl. Mater. 87, 341 (1979)CrossRefADSGoogle Scholar
  12. 12.
    E.A. Mikajlo, M.J. Ford, J. Phys. Condens. Matter 15, 6955 (2003)CrossRefADSGoogle Scholar
  13. 13.
    E.A. Mikajlo, K.L. Nixon, M.J. Ford, J. Phys. Condens. Matter 15, 2155 (2003)CrossRefADSGoogle Scholar
  14. 14.
    E.A. Mikajlo, K.L. Nixon, V.A. Coleman, M.J. Ford, J. Phys. Condens. Matter 14, 3587 (2002)CrossRefADSGoogle Scholar
  15. 15.
    L. Liu, V.E. Henrich, W.P. Ellis, I. Shindo, Phys. Rev. B 54, 2236 (1996)CrossRefADSGoogle Scholar
  16. 16.
    J. Jupille, P. Dolle, M. Besançon, Surf. Sci. 260, 271 (1992)CrossRefADSGoogle Scholar
  17. 17.
    A. Laziki, C.-S. Yoo, W.J. Evans, W.E. Pickett, Phys. Rev. B 73, 184120 (2006)Google Scholar
  18. 18.
    K. Kunc, I. Loa, A. Grzechnik, K. Syassen, Phys. Stat. Sol. B 242, 1857 (2005)CrossRefADSGoogle Scholar
  19. 19.
    R. Dovesi, C. Roetti, C. Freyria-Fara, M. Prencipe, V.R. Saunders, Chem. Phys. 156, 11 (1991)CrossRefGoogle Scholar
  20. 20.
    Ž. Čančarevič, J.C. Schön, M. Jansen, Phys. Rev. B 73, 224114 (2006)Google Scholar
  21. 21.
    Y.N. Zhuravlev, Y.M. Basalaev, A.S. Poplavnoi, Russ. Phys. J. 44, 398 (2001)CrossRefGoogle Scholar
  22. 22.
    R.D. Eithiraj, G. Jaiganesh, G. Kalpana, Physica B 396, 124 (2007)CrossRefADSGoogle Scholar
  23. 23.
    R. Dovesi, Solid. State. Commun. 54, 183 (1985)CrossRefADSGoogle Scholar
  24. 24.
    A. Shukla, M. Dolg, P. Fulde, J. Chem. Phys. 108, 8521 (1998)CrossRefADSGoogle Scholar
  25. 25.
    P. Goel, N. Choudhury, S.L. Chaplot, Phys. Rev. B 70, 174307 (2004)Google Scholar
  26. 26.
    J. Garcia Rodeja, M. Mayer, M. Hayoun, Modelling. Simul. Mater. Sci. Eng. 9, 81 (2001)CrossRefADSGoogle Scholar
  27. 27.
    M. Wilson, S. Jahn, P.A. Maden, J. Phys. Condens. Matter 16, 2795 (2004)CrossRefADSGoogle Scholar
  28. 28.
    M.M. Islam, T. Bredow, C. Minot, J. Phys. Chem. B 110, 9413 (2006)CrossRefGoogle Scholar
  29. 29.
    V. Mauchamp, F. Boucher, G. Ouvrard, P. Moreau, Phys. Rev. B 74, 115106 (2006)Google Scholar
  30. 30.
    S. Gao, Comp. Phys. Comm. 153, 190 (2003)CrossRefADSGoogle Scholar
  31. 31.
    K. Schwarz, J. Sol. St. Chem. 176, 319 (2003)CrossRefADSGoogle Scholar
  32. 32.
    G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Phys. Rev. B 64, 195134 (2001)Google Scholar
  33. 33.
    K. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002)MATHCrossRefADSGoogle Scholar
  34. 34.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An augmented plane wave plus local orbitals program for calculating crystal properties (Vienna University of Technology, Austria, 2001)Google Scholar
  35. 35.
    J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)CrossRefADSGoogle Scholar
  36. 36.
    J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefADSGoogle Scholar
  37. 37.
    E. Engel, S.H. Vosko, Phys. Rev. B 47, 13164 (1993)Google Scholar
  38. 38.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    F.D. Murnaghan, Prot. Natl. Acad. Sci. USA 30, 244 (1944)MATHCrossRefADSMathSciNetGoogle Scholar
  40. 40.
    E. Zintl, A. Harder, B. Dauth, Z. Elektrochem. 40, 588 (1934)Google Scholar
  41. 41.
    G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)CrossRefGoogle Scholar
  42. 42.
    S. Fahy, K.J. Chang, S.G. Louis, M.L. Cohen Phys. Rev. B 35, 7840 (1989)Google Scholar
  43. 43.
    P. Dufek, P. Blaha, K. Schwarz, Phys. Rev. B 50, 7279 (1994)CrossRefADSGoogle Scholar
  44. 44.
    Y. Ishii, J. Marakami, M. Itoh, J. Phys. Soc. Jpn 68, 2236 (1999)Google Scholar
  45. 45.
    G.Q. Lin, H. Gong, P. Wu, Phys. Rev. B 71, 85203 (2005)Google Scholar
  46. 46.
    F. Belmekhlouf, A. Becheri, N. Bouarissa, Sol. State Electron. 47, 1135 (2003)Google Scholar
  47. 47.
    R.D. Eithiraj, G. Jaiganesh, G. Kalpana, M. Rajagopalan, Phys. Sat. Sol. (b) 244, 1337 (2007)CrossRefGoogle Scholar
  48. 48.
    V. Kanchana, G. Vaitheeswaran, M. Rajagopalan, Physica B 328, 283 (2003)CrossRefADSGoogle Scholar
  49. 49.
    G. Kalpana, B. Palanivel, M. Rajagopalan, Phys. Rev. B 52, 4 (1995)CrossRefADSGoogle Scholar
  50. 50.
    C. Ambrosch-Draxl, J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • M. Moakafi
    • 1
  • R. Khenata
    • 2
  • A. Bouhemadou
    • 3
  • H. Khachai
    • 4
  • B. Amrani
    • 2
  • D. Rached
    • 4
  • M. Rérat
    • 5
  1. 1.Department of Physics, Faculty of ScienceUniversity of ChlefChlefAlgeria
  2. 2.Institute of Science & TechnologieUniversité of MascaraMascaraAlgeria
  3. 3.Department of Physics, Faculty of ScienceUniversity of SetifSetifAlgeria
  4. 4.Department of Physics, Faculty of ScienceUniversity of Sidi-Bel AbbèsSidi-Bel AbbèsAlgeria
  5. 5.Équipe de Chimie PhysiqueIPREM-UMR 5254, Université de PauPauFrance

Personalised recommendations