Skip to main content
Log in

Accounting for the energies and entropies of kinesin’s catalytic cycle

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

When the processive motor protein kinesin walks along the biopolymer microtubule it can occasionally make a backward step. Recent single molecule experiments on moving kinesin have revealed that the forward-to-backward step ratio decreases exponentially with the load force. Carter and Cross (Nature 435, 308-312, 2005) found that this ratio tightly followed 802 × exp[−0.95F], where F is the load force in piconewtons. A straightforward analysis of a Brownian step leads to L/(2k B T) as the factor in front of the load force, where L is the 8 nm stepsize, k B is the Boltzmann constant, and T is the temperature. The factor L/(2k B T) does indeed equal 0.95 pN−1. The same analysis shows how the 802 prefactor derives from the power stroke energy G as exp[G/(2k B T)]. There are indications that the power stroke derives from the entropically driven coiling of the 30 amino acid neck linker that connects the two kinesin heads. This idea is examined and consequences are deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Howard, Mechanics of motor proteins and the cytoskeleton (Sinauer Associates, Sunderland MA 2001) pp. 246–251

    Google Scholar 

  2. N.J. Carter, R.A. Cross, Nature 435, 308 (2005)

    Article  ADS  Google Scholar 

  3. M. Nishiyama, H. Higuchi, T. Yanagida, Nature Cell Biol. 4, 790 (2002)

    Article  Google Scholar 

  4. M. Bier, Phys. Rev. Lett. 91, 1481041 (2003)

    Article  Google Scholar 

  5. M. Bier, Contemporary Phys. 46, 41 (2005)

    Article  ADS  Google Scholar 

  6. S.J. Hagen, L. Qiu, S.A. Pabit, J. Phys.: Condensed Matter 17, 1503 (2005)

    Article  ADS  Google Scholar 

  7. K. Svoboda, C.F. Schmidt, B.J. Schnapp, S.M. Block, Nature 365, 721 (1993)

    Article  ADS  Google Scholar 

  8. M. Bier, BioSystems 88, 301 (2007)

    Article  Google Scholar 

  9. R.A. Cross, Trends in Biochem. Sci. 29, 301 (2004)

    Article  MathSciNet  Google Scholar 

  10. S. Rice, Y. Cui, C. Sindelar, N. Naber, M. Matuska, R. Vale, R. Cooke, Biophys. J. 84, 1844 (2003)

    Article  ADS  Google Scholar 

  11. Y. Taniguchi, M. Nishiyama, Y. Ishii, T. Yanagida, Nature Chem. Biol. 1, 342 (2005)

    Article  Google Scholar 

  12. R.D. Vale, R.A. Milligan, Sci. 288, 88 (2000)

    Article  ADS  Google Scholar 

  13. Yu.A. Grosberg, A.R. Khokhlov, Giant Molecules (Academic Press, San Diego 1997) pp. 69–91

    Google Scholar 

  14. C. Tanford, K. Kawahara, S. Lapanje, J. Biol. Chem. 241, 1921 (1966)

    Google Scholar 

  15. T. Ohashi, C.A. Hale, P.A.J. De Boer, H.P. Erickson, J. Bacteriology, 184, 4313 (2002)

    Article  Google Scholar 

  16. K. Kawaguchi, S. Ishiwata, Biochem. and Biophys. Res. Comm. 272, 895 (2000)

    Article  Google Scholar 

  17. S.M. Block, Biophys. J. 92, 29862995 (2007)

    Article  Google Scholar 

  18. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY 1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bier, M. Accounting for the energies and entropies of kinesin’s catalytic cycle. Eur. Phys. J. B 65, 415–418 (2008). https://doi.org/10.1140/epjb/e2008-00271-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00271-1

PACS

Navigation