Skip to main content
Log in

Nonequilibrium work relations: foundations and applications

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

When a macroscopic system in contact with a heat reservoir is driven away from equilibrium, the second law of thermodynamics places a strict bound on the amount of work performed on the system. With a microscopic system the situation is more subtle, as thermal fluctuations give rise to a statistical distribution of work values. In recent years it has been realized that such distributions encode surprisingly more information than one might expect from traditional thermodynamic arguments. I will discuss a number of exact results that relate equilibrium properties of the system, in particular free energy differences, to the fluctuations in the work performed during such a nonequilibrium process. I will describe the theoretical foundations of these relations, connections with irreversibility and the second law of thermodynamics, and potential experimental and computational applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bustamante, J. Liphardt, F. Ritort, Phys. Today 58, 43 (2005)

    Article  Google Scholar 

  2. G.M. Wang, E.M. Sevick, E. Mittag, D.J. Searles, D.J. Evans, Phys. Rev. Lett. 89, 050601 (2002)

    Article  ADS  Google Scholar 

  3. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)

    Article  ADS  Google Scholar 

  4. C. Jarzynski, Phys. Rev. E 56, 5018 (1997)

    Article  ADS  Google Scholar 

  5. E.G.D. Cohen, D. Mauzerall, J. Stat. Mech.: Theor. Exp., P07006 (2004)

  6. E.G.D. Cohen, D. Mauzerall, Mol. Phys. 103, 2923 (2005)

    Article  ADS  Google Scholar 

  7. J. Sung, Phys. Rev. E 76, 012101 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. J.M.G. Vilar, J.M. Rubi, Phys. Rev. Lett. 100, 020601 (2008)

    Article  ADS  Google Scholar 

  9. C.B.P. Finn, Thermal Physics, 2nd edn. (Chapman and Hall, London, 1993)

    Google Scholar 

  10. G.E. Crooks, J. Stat. Phys. 90, 1481 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. G.E. Crooks, Phys. Rev. E 60, 2721 (1999)

    Article  ADS  Google Scholar 

  12. D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 3616 (1993)

    Article  ADS  Google Scholar 

  13. D.J. Evans, D.J. Searles, Phys. Rev. E 50, 1645 (1994)

    Article  ADS  Google Scholar 

  14. G. Gallavotti, E.G.D. Cohen, J. Stat. Phys. 80, 931 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. J. Kurchan, J. Phys. A: Math. Gen. 31, 3719 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. J.L. Lebowitz, H. Spohn, J. Stat. Phys. 95, 333 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. C. Maes, J. Stat. Phys. 95, 367 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. D.J. Evans, D.J. Searles, Adv. Phys. 51, 1529 (2002)

    Article  ADS  Google Scholar 

  19. C. Maes, K. Netôcný, J. Stat. Phys. 110, 269 (2003)

    Article  MATH  Google Scholar 

  20. R.J. Harris, G.M. Schütz, J. Stat. Mech.: Theor. Exp., P07020 (2007)

  21. S. Rahav, C. Jarzynski, J. Stat. Mech.: Theor. Exp., P09012 (2007)

  22. D. Collin, F. Ritort, C. Jarzynski, S.B. Smith, I. Tinoco Jr., C. Bustamante, Nature 437, 231 (2005)

    Article  ADS  Google Scholar 

  23. G.E. Crooks, Phys. Rev. E 61, 2361 (2000)

    Article  ADS  Google Scholar 

  24. G. Hummer, A. Szabo, Proc. Natl. Acad. Sci. USA 98, 3658 (2001)

    Article  ADS  Google Scholar 

  25. T. Hatano, S. Sasa, Phys. Rev. Lett. 86, 3463 (2001)

    Article  ADS  Google Scholar 

  26. S.X. Sun, J. Chem. Phys. 118, 5769 (2003)

    Article  ADS  Google Scholar 

  27. D.J. Evans, Mol. Phys. 101, 1551 (2003)

    Article  ADS  Google Scholar 

  28. C. Jarzynski, J. Stat. Mech.: Theor. Exp., P09005 (2004)

  29. V. Chernyak, M. Chertkov, C. Jarzynski, Phys. Rev. E 71, 025102R (2005)

    Article  ADS  Google Scholar 

  30. H. Oberhofer, C. Dellago, P.L. Geissler, J. Phys. Chem. B 109, 6902 (2005)

    Article  Google Scholar 

  31. A. Imparato, L. Peliti, Europhys. Lett. 70, 740 (2005)

    Article  ADS  Google Scholar 

  32. U. Seifert, Phys. Rev. Lett. 95, 040602 (2005)

    Article  ADS  Google Scholar 

  33. M.A. Cuendet, Phys. Rev. Lett. 96, 120602 (2006)

    Article  ADS  Google Scholar 

  34. E. Schöll-Paschinger, C. Dellago, J. Chem. Phys. 125, 054105 (2006)

    Article  ADS  Google Scholar 

  35. R. Chelli, S. Marsili, A. Barducci, P. Procacci, J. Chem. Phys. 126, 044502 (2007)

    Article  ADS  Google Scholar 

  36. R.D. Astumian, J. Chem. Phys. 126, 111102 (2007)

    Article  ADS  Google Scholar 

  37. H. Ge, M. Qian, J. Math. Phys. 48, 053302 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  38. H. Ge, D.Q. Jiang, J. Stat. Phys. 131, 675 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. G.N. Bochkov, Y.E. Kuzovlev, Zh. Eksp. Teor. Fiz. 72, 238 (1977)

    ADS  Google Scholar 

  40. G.N. Bochkov, Y.E. Kuzovlev, Sov. Phys. JETP 45, 125 (1977)

    ADS  Google Scholar 

  41. G.N. Bochkov, Y.E. Kuzovlev, Physica 106, 443 (1981)

    Article  MathSciNet  Google Scholar 

  42. G.N. Bochkov, Y.E. Kuzovlev, Physica 106, 480 (1981)

    Article  MathSciNet  Google Scholar 

  43. C. Jarzynski, C. R. Physique 8, 495 (2007)

    Article  ADS  Google Scholar 

  44. J. Horowitz, C. Jarzynski, J. Stat. Mech.: Theor. Exp., P11002 (2007)

  45. U. Seifert (2008), invited contribution, this volume

  46. S. Yukawa, J. Phys. Soc. Jpn 69, 2367 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. J. Kurchan (2000), arXiv:cond-mat/0007360v2

  48. H. Tasaki (2000), arXiv:cond-mat/0009244v2

  49. S. Mukamel, Phys. Rev. Lett. 90, 170604 (2003)

    Article  ADS  Google Scholar 

  50. W. De Roeck, C. Maes, Phys. Rev. E 69, 026115 (2004)

    Article  ADS  Google Scholar 

  51. V. Chernyak, S. Mukamel, Phys. Rev. Lett. 93, 048302 (2004)

    Article  ADS  Google Scholar 

  52. T. Monnai, Phys. Rev. E 72, 027102 (2005)

    Article  ADS  Google Scholar 

  53. P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102(R) (2007)

    Article  ADS  Google Scholar 

  54. P. Talkner, P. Hänggi, J. Phys. A.: Math. Theor. 40, F569 (2007)

    Article  MATH  ADS  Google Scholar 

  55. P. Talkner, P. Hänggi, M. Morillo (2007), arXiv:0707.2307v1

  56. J. Teifel, G. Mahler, Phys. Rev. E 76, 051126 (2007)

    Article  ADS  Google Scholar 

  57. D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987)

    Google Scholar 

  58. G. Hummer, A. Szabo, Acc. Chem. Res. 38, 504 (2005)

    Article  Google Scholar 

  59. Z. Schuss, Theory and Applications of Stochastic Differential Equations (Wiley, New York, 1980)

    MATH  Google Scholar 

  60. P. Ao, Comm. Theor. Phys. (2008), in press

  61. P. Garbaczewski, R. Olkiewicz, Lecture Notes in Physics, Vol. 597 (Springer-Verlag, Berlin, 2002)

    Google Scholar 

  62. R.P. Feynman, A.R. Hibbs, Quantum Physics and Path Integrals (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

  63. C. Jarzynski, Proc. Natl. Acad. Sci. USA 98, 3636 (2001)

    Article  ADS  Google Scholar 

  64. J. Gibbs, Elementary Principles in Statistical Mechanics (Scribner’s, New York, 1902)

    MATH  Google Scholar 

  65. C. Jarzynski, J. Stat. Phys. 96, 415 (1999)

    Article  MATH  Google Scholar 

  66. B. Cleuren, C. Van den Broeck, R. Kawai, Phys. Rev. Lett. 96, 050601 (2006)

    Article  ADS  Google Scholar 

  67. C. Jarzynski, Phys. Rev. E 73, 046105 (2006)

    Article  ADS  Google Scholar 

  68. M.R. Shirts, E. Bair, G. Hooker, V.S. Pande, Phys. Rev. Lett. 91, 140601 (2003)

    Article  ADS  Google Scholar 

  69. P. Maragakis, F. Ritort, C. Bustamante, M. Karplus, G.E. Crooks (2007), arXiv:0707.00891v1

  70. R. Kawai, J.M.R. Parrondo, C. Van den Broeck, Phys. Rev. Lett. 98, 080602 (2007)

    Article  ADS  Google Scholar 

  71. T.M. Cover, T.J.A., Elements of Information Theory, 2nd edn. (Wiley, Hoboken, New Jersey, 2006)

    MATH  Google Scholar 

  72. R. Landauer, IBM J. Res. Dev. 44, 261 (1961)

    Article  MathSciNet  Google Scholar 

  73. P. Gaspard, J. Stat. Phys. 117, 599 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  74. J. Liphardt, S. Dumont, S.B. Smith, I. Tinoco Jr., C. Bustamante, Science 296, 1832 (2002)

    Article  ADS  Google Scholar 

  75. N.C. Harris, Y. Song, C.H. Kiang, Phys. Rev. Lett. 99, 068101 (2007)

    Article  ADS  Google Scholar 

  76. W.J. Greenleaf, K.L. Frieda, D.A.N. Foster, M.T. Woodside, S.M. Block, Nature 319, 630 (2008)

    Google Scholar 

  77. A. Imparato, F. Sbrana, M. Vassalli (2008), arXiv:0804.2980

  78. F. Douarche, S. Ciliberto, A. Petrosyan, I. Rabbiosi, Europhys. Lett. 70, 593 (2005)

    Article  ADS  Google Scholar 

  79. F. Douarche, S. Ciliberto, A. Petrosyan, J. Stat. Mech.: Theor. Exp., P09011 (2005)

  80. V. Blickle, T. Speck, L. Helden, U. Seifert, C. Bechinger, Phys. Rev. Lett. 96, 070603 (2006)

    Article  ADS  Google Scholar 

  81. J.C. Reid (2006), Ph.D. Thesis, Australian National University

  82. E.H. Trepagnier, C. Jarzynski, F. Ritort, G.E. Crooks, C.J. Bustamante, J. Liphardt, Proc. Natl. Acad. Sci. USA 101, 15038 (2004)

    Article  ADS  Google Scholar 

  83. M.R. Reddy, M.D. Erion, Free Energy Calculations in Rational Drug Design (Kluwer Academic / Plenum Publishers, New York, 2001)

    Google Scholar 

  84. D. Frenkel, B. Smit, Understanding Molecular Simulation, 2nd edn. (Academic Press, 2002)

  85. C. Chipot, A. Pohorille, Free Energy Calculations (Springer, Berlin, 2007)

    Google Scholar 

  86. R. Amaro, Z. Luthey-Schulten, Chem. Phys. 307, 147 (2004)

    Article  ADS  Google Scholar 

  87. N.D. Lu, D.A. Kofke, J. Chem. Phys. 114, 7303 (2001)

    Article  ADS  Google Scholar 

  88. N.D. Lu, D.A. Kofke, J. Chem. Phys. 115, 6866 (2001)

    Article  ADS  Google Scholar 

  89. D.M. Zuckerman, T.B. Woolf, Chem. Phys. Lett. 351, 445 (2002)

    Article  ADS  Google Scholar 

  90. D.M. Zuckerman, T.B. Woolf, Phys. Rev. Lett. 89, 180602 (2002)

    Article  ADS  Google Scholar 

  91. J. Gore, F. Ritort, C. Bustamante, Proc. Natl. Acad. Sci. USA 100, 12564 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  92. F. Ritort, J. Stat. Mech.: Theor. Exp., P10016 (2004)

  93. D. Wu, D.A. Kofke, J. Chem. Phys. 121, 8742 (2004)

    Article  ADS  Google Scholar 

  94. D. Wu, D.A. Kofke, Phys. Rev. E 70, 066702 (2004)

    Article  ADS  Google Scholar 

  95. F.M. Ytreberg, D.M. Zuckerman, J. Comput. Chem. 25, 1749 (2004)

    Article  Google Scholar 

  96. D. Wu, D.A. Kofke, J. Chem. Phys. 122, 204104 (2005)

    Article  ADS  Google Scholar 

  97. D.A. Kofke, Mol. Phys. 104, 3701 (2006)

    Article  ADS  Google Scholar 

  98. S. Park, K. Schulten, J. Chem. Phys. 120, 5946 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jarzynskia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarzynskia, C. Nonequilibrium work relations: foundations and applications. Eur. Phys. J. B 64, 331–340 (2008). https://doi.org/10.1140/epjb/e2008-00254-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00254-2

PACS

Navigation