Skip to main content
Log in

Monitoring noise-resonant effects in cancer growth influenced by external fluctuations and periodic treatment

The European Physical Journal B Aims and scope Submit manuscript

Cite this article

Abstract

We investigate a mathematical model describing the growth of tumor in the presence of immune response of a host organism. The dynamics of tumor and immune cells populations is based on the generic Michaelis-Menten kinetics depicting interaction and competition between the tumor and the immune system. The appropriate phenomenological equation modeling cell-mediated immune surveillance against cancer is of the predator-prey form and exhibits bistability within a given choice of the immune response-related parameters. Under the influence of weak external fluctuations, the model may be analyzed in terms of a stochastic differential equation bearing the form of an overdamped Langevin-like dynamics in the external quasi-potential represented by a double well. We analyze properties of the system within the range of parameters for which the potential wells are of the same depth and when the additional perturbation, modeling a periodic treatment, is insufficient to overcome the barrier height and to cause cancer extinction. In this case the presence of a small amount of noise can positively enhance the treatment, driving the system to a state of tumor extinction. On the other hand, however, the same noise can give rise to return effects up to a stochastic resonance behavior. This observation provides a quantitative analysis of mechanisms responsible for optimization of periodic tumor therapy in the presence of spontaneous external noise. Studying the behavior of the extinction time as a function of the treatment frequency, we have also found the typical resonant activation effect: For a certain frequency of the treatment, there exists a minimum extinction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. S.A. Rosenberg, P. Spiess, R. Lafreniere, Science 233, 4770 1318 (1986)

    Article  ADS  Google Scholar 

  2. R.O. Dillman, Future Drugs 5, 6 1041 (2005)

    Google Scholar 

  3. R.M. Thorn, C.S. Henney, J. Immunol. 117, 6 2213 (1976)

    Google Scholar 

  4. P.M. Moy, E.C. Holmes, S.H. Golub, Cancer Research, 45, 1 57 (1985)

    Google Scholar 

  5. D. Kirschner, J.C. Panetta, J. Math. Biol. 37, 235 (1998)

    Article  MATH  Google Scholar 

  6. A. Matzavinos, M.A.J. Chaplain, V.A. Kuznetsov, Math. Med. Biol. 21, 1 (2004); D. Wodarz, N.L. Komarova, Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling (World Scientific, 2005), p. 185

    Article  MATH  Google Scholar 

  7. R.P. Garay, R. Lefever, J. Theor. Biol. 73, 417 (1978)

    Article  MathSciNet  Google Scholar 

  8. A. LeFever, S. Micha, Scand. J. Immunol. 29, 417 (1989)

    Article  Google Scholar 

  9. A. Ochab-Marcinek, E. Gudowska-Nowak, Physica A, 343, 557 (2004)

    ADS  Google Scholar 

  10. A. Fiasconaro, B. Spagnolo, A. Ochab-Marcinek, E. Gudowska-Nowak, Phys. Rev. E 74, 041904 (2006)

    Article  ADS  Google Scholar 

  11. A. Ochab-Marcinek, A. Fiasconaro, E. Gudowska-Nowak, B. Spagnolo, Acta Physica Polonica B 37 1651 (2006)

    ADS  Google Scholar 

  12. B. Spagnolo et al., Acta Phys. Pol. B 38, 1925 (2007)

    ADS  Google Scholar 

  13. R. Lefever, R. Garay, Local description of immune tumor rejection, Dev. Cell Biol., edited by A.J. Valleron, P.D.M. Macdonald (Elsevier, Amsterdam, 1978), Vol. 2

    Google Scholar 

  14. R. Lefever, W. Horsthemke, Bull. of Math. Biol 41, 469 (1979)

    MATH  Google Scholar 

  15. I. Prigogine, R. Lefever, Comp. Biochem. Physiol. 67B, 389 (1980)

    Google Scholar 

  16. W. Horsthemke, R. Lefever, Noise-Induced Transitions (Springer-Verlag, Berlin, 1984)

    MATH  Google Scholar 

  17. W. Ebeling, B. Röder, L. Schimansky-Geier, Studia Biophys. 113, 1–2 151 (1986)

    Google Scholar 

  18. E. Gudowska-Nowak, Acta Phys. Pol. A. 64, 341 (1983)

    Google Scholar 

  19. E. Gudowska-Nowak, Acta Phys. Pol. A. 65, 573 (1984)

    Google Scholar 

  20. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 234 (1998); P. Hänggi, Chem. Phys. Chem. 3, 285 (2002)

    Article  ADS  Google Scholar 

  21. B. McNamara, K. Wiesenfeld, Phys. Rev. A 39, 4854 (1989)

    Article  ADS  Google Scholar 

  22. L.K. Andersen, M.C. Mackey, J. Theor. Biol. 209, 113 (2001)

    Article  Google Scholar 

  23. F. Michor, M.A. Nowak, Y. Iwasa, J. Theor. Biol. 240, 521 (2006)

    Article  MathSciNet  Google Scholar 

  24. M. Molski, J. Konarski, Phys. Rev. E. 68, 021916 (2003)

    Article  ADS  Google Scholar 

  25. C.R. Doering, J.C. Gadoua, Phys. Rev. Lett. 69, 2318 (1992); M. Bier, R.D. Astumian, Phys. Rev. Lett. 71, 1649 (1993); P. Reimann, Phys. Rev. Lett. 74, 4576 (1995); M. Marchi et al., Phys. Rev. E 54, 3479 (1996); J. Iwaniszewski, Phys. Rev. E 54, 3173 (1996); M. Bogu~n’a, J.M. Porra, J. Masoliver, K. Lindenberg, Phys. Rev. E 57, 3990 (1998); R.N. Mantegna, B. Spagnolo, Phys. Rev. Lett. 84, 3025 (2000); P. Pechukas, P. Hänggi, Phys. Rev. Lett. 73, 2772 (1994)

    Article  ADS  Google Scholar 

  26. N. Agudov, B. Spagnolo, Phys. Rev. E 64, (2001) 035105(R)

    Article  ADS  Google Scholar 

  27. C. Schmitt, B. Dybiec, P. Hänggi, C. Bechinger, Europhys. Lett. 74, 937 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  28. B. Dybiec, E. Gudowska-Nowak, Acta Phys. Pol. B. 38, 1759 (2007)

    ADS  Google Scholar 

  29. A.G. Papatsorisa, C. Deliveliotisb, A. Giannopoulosb, C. Dimopoulosb, Urol. Int. 72, 284 (2004)

    Article  Google Scholar 

  30. M.D. Hiroki Shirato et al., Int. J. Radiation Oncology Biol. Phys. 56, 240 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fiasconaro.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fiasconaro, A., Ochab-Marcinek, A., Spagnolo, B. et al. Monitoring noise-resonant effects in cancer growth influenced by external fluctuations and periodic treatment. Eur. Phys. J. B 65, 435–442 (2008). https://doi.org/10.1140/epjb/e2008-00246-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00246-2

PACS

Navigation