Abstract
We investigate a mathematical model describing the growth of tumor in the presence of immune response of a host organism. The dynamics of tumor and immune cells populations is based on the generic Michaelis-Menten kinetics depicting interaction and competition between the tumor and the immune system. The appropriate phenomenological equation modeling cell-mediated immune surveillance against cancer is of the predator-prey form and exhibits bistability within a given choice of the immune response-related parameters. Under the influence of weak external fluctuations, the model may be analyzed in terms of a stochastic differential equation bearing the form of an overdamped Langevin-like dynamics in the external quasi-potential represented by a double well. We analyze properties of the system within the range of parameters for which the potential wells are of the same depth and when the additional perturbation, modeling a periodic treatment, is insufficient to overcome the barrier height and to cause cancer extinction. In this case the presence of a small amount of noise can positively enhance the treatment, driving the system to a state of tumor extinction. On the other hand, however, the same noise can give rise to return effects up to a stochastic resonance behavior. This observation provides a quantitative analysis of mechanisms responsible for optimization of periodic tumor therapy in the presence of spontaneous external noise. Studying the behavior of the extinction time as a function of the treatment frequency, we have also found the typical resonant activation effect: For a certain frequency of the treatment, there exists a minimum extinction time.
This is a preview of subscription content,
to check access.References
S.A. Rosenberg, P. Spiess, R. Lafreniere, Science 233, 4770 1318 (1986)
R.O. Dillman, Future Drugs 5, 6 1041 (2005)
R.M. Thorn, C.S. Henney, J. Immunol. 117, 6 2213 (1976)
P.M. Moy, E.C. Holmes, S.H. Golub, Cancer Research, 45, 1 57 (1985)
D. Kirschner, J.C. Panetta, J. Math. Biol. 37, 235 (1998)
A. Matzavinos, M.A.J. Chaplain, V.A. Kuznetsov, Math. Med. Biol. 21, 1 (2004); D. Wodarz, N.L. Komarova, Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling (World Scientific, 2005), p. 185
R.P. Garay, R. Lefever, J. Theor. Biol. 73, 417 (1978)
A. LeFever, S. Micha, Scand. J. Immunol. 29, 417 (1989)
A. Ochab-Marcinek, E. Gudowska-Nowak, Physica A, 343, 557 (2004)
A. Fiasconaro, B. Spagnolo, A. Ochab-Marcinek, E. Gudowska-Nowak, Phys. Rev. E 74, 041904 (2006)
A. Ochab-Marcinek, A. Fiasconaro, E. Gudowska-Nowak, B. Spagnolo, Acta Physica Polonica B 37 1651 (2006)
B. Spagnolo et al., Acta Phys. Pol. B 38, 1925 (2007)
R. Lefever, R. Garay, Local description of immune tumor rejection, Dev. Cell Biol., edited by A.J. Valleron, P.D.M. Macdonald (Elsevier, Amsterdam, 1978), Vol. 2
R. Lefever, W. Horsthemke, Bull. of Math. Biol 41, 469 (1979)
I. Prigogine, R. Lefever, Comp. Biochem. Physiol. 67B, 389 (1980)
W. Horsthemke, R. Lefever, Noise-Induced Transitions (Springer-Verlag, Berlin, 1984)
W. Ebeling, B. Röder, L. Schimansky-Geier, Studia Biophys. 113, 1–2 151 (1986)
E. Gudowska-Nowak, Acta Phys. Pol. A. 64, 341 (1983)
E. Gudowska-Nowak, Acta Phys. Pol. A. 65, 573 (1984)
L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 234 (1998); P. Hänggi, Chem. Phys. Chem. 3, 285 (2002)
B. McNamara, K. Wiesenfeld, Phys. Rev. A 39, 4854 (1989)
L.K. Andersen, M.C. Mackey, J. Theor. Biol. 209, 113 (2001)
F. Michor, M.A. Nowak, Y. Iwasa, J. Theor. Biol. 240, 521 (2006)
M. Molski, J. Konarski, Phys. Rev. E. 68, 021916 (2003)
C.R. Doering, J.C. Gadoua, Phys. Rev. Lett. 69, 2318 (1992); M. Bier, R.D. Astumian, Phys. Rev. Lett. 71, 1649 (1993); P. Reimann, Phys. Rev. Lett. 74, 4576 (1995); M. Marchi et al., Phys. Rev. E 54, 3479 (1996); J. Iwaniszewski, Phys. Rev. E 54, 3173 (1996); M. Bogu~n’a, J.M. Porra, J. Masoliver, K. Lindenberg, Phys. Rev. E 57, 3990 (1998); R.N. Mantegna, B. Spagnolo, Phys. Rev. Lett. 84, 3025 (2000); P. Pechukas, P. Hänggi, Phys. Rev. Lett. 73, 2772 (1994)
N. Agudov, B. Spagnolo, Phys. Rev. E 64, (2001) 035105(R)
C. Schmitt, B. Dybiec, P. Hänggi, C. Bechinger, Europhys. Lett. 74, 937 (2006)
B. Dybiec, E. Gudowska-Nowak, Acta Phys. Pol. B. 38, 1759 (2007)
A.G. Papatsorisa, C. Deliveliotisb, A. Giannopoulosb, C. Dimopoulosb, Urol. Int. 72, 284 (2004)
M.D. Hiroki Shirato et al., Int. J. Radiation Oncology Biol. Phys. 56, 240 (2003)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fiasconaro, A., Ochab-Marcinek, A., Spagnolo, B. et al. Monitoring noise-resonant effects in cancer growth influenced by external fluctuations and periodic treatment. Eur. Phys. J. B 65, 435–442 (2008). https://doi.org/10.1140/epjb/e2008-00246-2
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1140/epjb/e2008-00246-2