Skip to main content

Noise with memory as a model of lemming cycles

Abstract

Population cycles in small rodents of the north are modeled by noise with memory. Multiannual lemming density fluctuations are presented as a pulse sequence. These pulses correspond to the peaks of lemming density. The memory is presented as some delay time after each pulse. During this time the next pulse is forbidden. Parameter of periodicity, average period, correlation function and parameter of synchronization are calculated for different places of North America. Examples of equations modeling population dynamics of lemmings (or their predators) are considered. The model of connected oscillators gives the qualitative explanation of synchronization effects and relation between synchronization and periodicity. These results have implication for the testing of hypotheses regarding lemming cycles.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    W.J. Blake, M. Kaern, C.R. Cantor, J.J. Collins, Nature 422, 633 (2003)

    Article  ADS  Google Scholar 

  2. 2.

    E.M. Ozbudak, M. Thattai, I. Kurtser, A.D. Grossman, A. van Oudenaarden, Nat. Genet. 1, 69 (2002)

    Article  Google Scholar 

  3. 3.

    P. Turchin, L. Oksanen, P. Ekerholm, T. Oksanen, H. Henttonen, Nature 405, 562 (2000)

    Article  ADS  Google Scholar 

  4. 4.

    B. Spagnolo, A. Fiasconaro, D. Valenti, FNL 3, L177 (2003)

    Article  Google Scholar 

  5. 5.

    D. Valenti, A. Fiasconaro, B. Spagnolo, Physica A 331, 477 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. 6.

    B. Spagnolo, D. Valenti, A. Fiasconaro, Mathematical Biosciences and Engineering 1, 185 (2004)

    MATH  MathSciNet  Google Scholar 

  7. 7.

    H.C. Tuckwell, E. Le Corfec, J. Theor. Biol. 195, 451 (1998)

    Article  Google Scholar 

  8. 8.

    O. Chichigina, D. Valenti, B. Spagnolo, FNL, 5, L243 (2005)

    Article  Google Scholar 

  9. 9.

    M. Predavec, C.J. Krebs, K.D.R. Hyndman, Oecologia 126, 216 (2001)

    Article  Google Scholar 

  10. 10.

    N.C. Stenseth, K.-S. Chan, E. Framstad, H. Tong, Proc. R. Soc. Lond. B 265, 1957 (1998)

    Article  Google Scholar 

  11. 11.

    S. Erlinge, K. Danell, P. Frodin, D. Hasselquist, P. Nilsson, E.-B. Olofsson, M. Svensson, Oecologia 119, 493 (1999)

    Article  Google Scholar 

  12. 12.

    E. Framstad, N.C. Stenseth, O.N. Bjornstad, W. Falck, Phil. Trans. R. Soc. Lond. B 264, 31 (1997)

    ADS  Google Scholar 

  13. 13.

    N.C. Stenseth, K.-S. Chan, E. Framstad, H. Tong, Proc. R. Soc. Lond. B 265, 1957 (1998)

    Article  Google Scholar 

  14. 14.

    J. Bety, G. Gauthier, E. Korpimaki, J.F. Giroux, J. Anim. Ecol. 71, 88 (2002)

    Article  Google Scholar 

  15. 15.

    H. Wang, Y. Kuang, Mathematical Biosciences and Engineering 4, 1 (2007)

    MathSciNet  Google Scholar 

  16. 16.

    A. Angerbjorn, M. Tannerfeldt, S. Erlinge, J. Anim. Ecol. 68, 34 (1999)

    Article  Google Scholar 

  17. 17.

    L.M. Riccardi, F. Esposito, Kybernetic 3. Bd., Heft 3, 148 (1966)

    Google Scholar 

  18. 18.

    E. Jakeman, J.H. Jefferson, Optica Acta 33, 557 (1986)

    Google Scholar 

  19. 19.

    G. Faraci, A.R. Pennisi, Phys. Rev. A 33, 583 (1986)

    Article  ADS  Google Scholar 

  20. 20.

    A. Kolmogorov, Annals Math. Stat. 12, 161 (1941)

    Google Scholar 

  21. 21.

    R. Stratonovich, Topics in the Theory of Random Noise (Gordon and Breach, New York, London, 1963), Vol. 1

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. A. Chichigina.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chichigina, O.A. Noise with memory as a model of lemming cycles. Eur. Phys. J. B 65, 347–352 (2008). https://doi.org/10.1140/epjb/e2008-00226-6

Download citation

PACS

  • 87.23.Cc Population dynamics and ecological pattern formation
  • 02.50.Ey Stochastic processes
  • 05.40.Ca Noise