Skip to main content
Log in

Life at ultralow interfacial tension: wetting, waves and droplets in demixed colloid-polymer mixtures

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Mixtures of colloids and polymers display a rich phase behavior, involving colloidal gas (rich in polymer, poor in colloid), colloidal liquid (poor in polymer, rich in colloid) and colloidal crystal phases (poor in polymer, highly ordered colloids). Recently, the colloidal gas-colloidal liquid interface received considerable attention as well. Due to the colloidal length scale the interfacial tension is much lower than in the atomic or molecular analog (nN/m instead of mN/m). This ultra-low interfacial tension has pronounced effects on the kinetics of phase separation, the colloidal gas-liquid profile near a single wall and the thermally induced fluctuations of the interface. The amplitudes of these thermally excited capillary waves are restrained by the interfacial tension and are for that reason of the order of the particle diameter. Therefore, in molecular systems, the capillary waves can only be seen indirectly in scattering experiments. In colloidal systems, however, the wave amplitudes are on a (sub) micrometer scale. This fact enables the direct observation of capillary waves in both real space and real time using confocal scanning laser microscopy. Moreover, the real space technique enables us to demonstrate the strong influence of interface fluctuations on droplet coalescence and droplet break up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, Ann. D. Physik 17, 549 (1905)

    Article  ADS  Google Scholar 

  2. J. Perrin, Ann. Chim. Phys. 18, 5 (1909)

    Google Scholar 

  3. M. Smoluchowski, Wien. Ber. 123, 2381 (1914); M. Smoluchowski, Wien. Ber. 124, 339 (1915)

    Google Scholar 

  4. T. Svedberg, Z. Phys. Chem. 77, 147 (1911)

    Google Scholar 

  5. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981)

    MATH  Google Scholar 

  7. M. Smoluchowski, Ann. D. Physik 25, 205 (1908)

    Article  ADS  Google Scholar 

  8. P. Debye, R.T. Jacobsen, J. Chem. Phys. 48, 203 (1968)

    Article  ADS  Google Scholar 

  9. D. Beysens, P. Guenon, F. Perrot, J. Phys.: Condens. Matter 2, SA127 (1991)

    Article  ADS  Google Scholar 

  10. L. Mandelstam, Ann. D. Physik 41, 609 (1914)

    Google Scholar 

  11. F.P. Buff, R.A. Lovett, F.H. Stillinger, Phys. Rev. Lett. 15, 621 (1965)

    Article  ADS  Google Scholar 

  12. D.G.A.L. Aarts, M. Schmidt, H.N.W. Lekkerkerker, Science 304, 847 (2004)

    Article  ADS  Google Scholar 

  13. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Clarendon Press, Oxford, 1982)

    Google Scholar 

  14. L. Onsager, An. N.Y. Acad. Sci. 51, 627 (1949)

    Article  ADS  Google Scholar 

  15. K. Shundyak, R. Van Roij, J. Phys.: Condens. Matter 13, 4789 (2001)

    Article  ADS  Google Scholar 

  16. W. Chen, D.G. Gray, Langmuir 18, 633 (2002)

    Article  Google Scholar 

  17. D. van der Beek, H. Reich, P. van der Schoot, M. Dijkstra, T. Schilling, R. Vink, M. Schmidt, R. van Roij, H.N.W. Lekkerkerker, Phys. Rev. Lett. 97, 087801 (2006)

    Article  ADS  Google Scholar 

  18. S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954)

    ADS  Google Scholar 

  19. A. Vrij, Pure Appl. Chem. 48, 471 (1976)

    Article  Google Scholar 

  20. H.N.W. Lekkerkerker, W.C. Poon, P.N. Pusey, A. Stroobants, P.B. Warren, Europhys. Lett. 20, 559 (1992)

    Article  ADS  Google Scholar 

  21. G.A. Vliegenthart, H.N.W. Lekkerkerker, Progr. Colloid Polym. Sci. 105, 27 (1997)

    Article  Google Scholar 

  22. E.H. de Hoog, H.N.W. Lekkerkerker, J. Phys. Chem. B 103, 5274 (1999)

    Article  Google Scholar 

  23. D.G.A.L. Aarts, J.H. van der Wiel, H.N.W. Lekkerkerker, J. Phys.: Condens. Matt. 15, s245 (2003)

    Article  ADS  Google Scholar 

  24. H.M. Princen, I.Y.Z. Zia, S.G. Mason, J. Colloid Interface Sci. 23, 99 (1967)

    Article  Google Scholar 

  25. M. Tolan, O.H. Seeck, J.P Schlomka, W. Press, J. Wang, S.K. Sinha, Z. Li, M.H. Rafailovich, J. Sokolov, Phys. Rev. Lett. 81, 2731 (1998)

    Article  ADS  Google Scholar 

  26. J. Meunier, J. Physique. Lett. 46, L 1005 (1985)

    Article  Google Scholar 

  27. K. Mecke, S. Dietrich, J. Chem. Phys. 123, 204723 (2005)

    Article  ADS  Google Scholar 

  28. J. Meunier, in Liquids at Interfaces, edited by J. Charvolin, J.F. Joanny, J. Zinn-Justin (North-Holland, New York, 1988), p. 327

    Google Scholar 

  29. U.S. Jeng, L. Esibov, L. Crow, A. Steyerl, J. Phys.: Condens. Matter 10, 4955 (1998)

    Article  ADS  Google Scholar 

  30. J. Thomson, H. Newall, Proc. R. Soc. London 39, 417 (1885)

    Article  Google Scholar 

  31. A.F. Jones, S.D.R. Wilson, J. Fluid Mech. 87, 263 (1978)

    Article  MATH  ADS  Google Scholar 

  32. J. Eggers, J.R. Litster, H.A. Stone, J. Fluid Mech. 401, 293 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. G.V. Jeffreys, J.L Hawksley, J. Appl. Chem. 12, 329 (1962)

    Article  Google Scholar 

  34. A.H. Brown, C. Hanson, Nature 214, 76 (1967)

    Article  ADS  Google Scholar 

  35. D.G.A.L. Aarts, H.N.W. Lekkerkerker, H. Guo, G. Wegdam, D. Bonn, Phys. Rev. Lett. 95, 164503 (2005)

    Article  ADS  Google Scholar 

  36. D.G.A.L. Aarts, H.N.W. Lekkerkerker, J. Fluid Mech., to be published

  37. J. Eggers, Rev. Mat. Phys. 69, 865 (1997)

    Article  ADS  Google Scholar 

  38. J.W.S. Rayleigh, Proc. R. Soc. London 10, 4 (1879)

    Google Scholar 

  39. S. Tomotika, Proc. R. Soc. London A 150, 322 (1935)

    Article  MATH  ADS  Google Scholar 

  40. M. Moseler, U. Landman, Science 289, 1165 (2000)

    Article  ADS  Google Scholar 

  41. L. D. Landau, E.M. Lifshitz, J. Exp. Theor. Phys. (USSR) 32, 618 (1957)

    Google Scholar 

  42. Y. Hennequin, D.G.A.L Aarts, J.H. van der Wiel, G. Wegdam, J. Eggers, H.N.W. Lekkerkerker, D. Bonn, Phys. Rev. Lett. 97, 244502 (2006)

    Article  ADS  Google Scholar 

  43. D.G.A.L Aarts, M. Schmidt, H.N.W. Lekkerkerker, K.R. Mecke, Adv. In Solid State Phys. 45, 15 (2005)

    Article  Google Scholar 

  44. Y. Hennequin, D.G.A.L Aarts, J.O. Indekeu, H.N.W. Lekkerkerker, D. Bonn, Phys. Rev. Lett., submitted for publication

  45. D.S. Fisher, D.A. Huse, Phys. Rev. B 32, 247 (1985)

    Article  ADS  Google Scholar 

  46. R. Lipowsky, M.E. Fisher, Phys. Rev. B 36, 2126 (1987)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. W. A. de Villeneuve.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lekkerkerker, H.N.W., de Villeneuve, V.W.A., de Folter, J.W.J. et al. Life at ultralow interfacial tension: wetting, waves and droplets in demixed colloid-polymer mixtures. Eur. Phys. J. B 64, 341–347 (2008). https://doi.org/10.1140/epjb/e2008-00135-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00135-8

PACS

Navigation