Skip to main content
Log in

Network topology of an experimental futures exchange

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

Many systems of different nature exhibit scale free behaviors. Economic systems with power law distribution in the wealth are one of the examples. To better understand the working behind the complexity, we undertook an experiment recording the interactions between market participants. A Web server was setup to administer the exchange of futures contracts whose liquidation prices were coupled to event outcomes. After free registration, participants started trading to compete for the money prizes upon maturity of the futures contracts at the end of the experiment. The evolving `cash' flow network was reconstructed from the transactions between players. We show that the network topology is hierarchical, disassortative and small-world with a power law exponent of 1.02±0.09 in the degree distribution after an exponential decay correction. The small-world property emerged early in the experiment while the number of participants was still small. We also show power law-like distributions of the net incomes and inter-transaction time intervals. Big winners and losers are associated with high degree, high betweenness centrality, low clustering coefficient and low degree-correlation. We identify communities in the network as groups of the like-minded. The distribution of the community sizes is shown to be power-law distributed with an exponent of 1.19±0.16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H.R. Ueda, S. Hayashi, S. Matsuyama, T. Yomo, S. Hashimoto, S.A. Kay, J.B. Hogenesch, M. Iino, Proc. Natl. Acad. Sci. USA 101, 3765 (2004)

    Article  ADS  Google Scholar 

  • R. Guimera, S. Mossa, A. Turtschi, L.A.N. Amaral, Proc. Natl. Acad. Sci. USA 102, 7794 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • M.E.J. Newman, Proc. Natl. Acad. Sci. USA 98, 404 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • P. Uetz, L. Giot, G. Cagney, T.A. Mansfield, R.S. Judson, J.R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, J.M. Rothberg, Nature 403, 623 (2000)

    Article  ADS  Google Scholar 

  • Z. Toroczkai, K.E. Bassler, Nature 428, 716 (2004)

    Article  ADS  Google Scholar 

  • D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  • R. Albert, H. Jeong, A.-L. Barabasi, Nature 406, 378 (2000)

    Article  ADS  Google Scholar 

  • M.E.J. Newman, J. Park, Phys. Rev. E 68, 036122 (2003)

    Article  ADS  Google Scholar 

  • E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.-L. Barabasi, Science 297, 1551 (2002)

    Article  ADS  Google Scholar 

  • B.B. Mandelbrot, J. Business 36, 394 (1963)

    Article  Google Scholar 

  • J.P. Bouchaud, M. Potters, Théorie des Risques Financiers (Alea-Saclay/Eyrolles, Paris 1997)

  • R.N. Mantegna, H.E. Stanley, Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, 2000)

  • H.E. Stanley, L.A.N. Amaral, S.V. Buldyrev, P. Gopikrishnan, V. Plerou, M.A. Salinger, Proc. Natl. Acad. Sci. USA 99, 2561 (2002)

    Article  Google Scholar 

  • J.A. Scheinkman, M. Woodford, Am. Econ. Rev. 84, 417 (1994)

    Google Scholar 

  • S.C. Wang, C.Y. Yu, K.P. Liu, S.P. Li, Proc. IEEE/WIC/ACM International Conference on Web Intelligence (WI'04), IEEE Computer Society, Washington DC 173 (2004)

  • S.C. Wang, J.J. Tseng, S.P. Li, S.H. Chen, New Mathematics and Natural Computation 2, 271 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • S.C. Wang, S.P. Li, C.C. Tai, S.H. Chen, physics/0503176, to appear in Quantitative Finance

  • R. Forsythe, F. Nelson, G.R. Neumann, J. Wright, The Am. Econ. Rev. 82, 1142 (1992) http://www.biz.uiowa.edu/iem/

    Google Scholar 

  • H. Takayasu, A.-H. Sato, M. Takayasu, Phys. Rev. Lett. 79, 966 (1997)

    Article  MATH  ADS  Google Scholar 

  • D. Sornette, Phys. Rev. E 57, 4811 (1998)

    Article  ADS  Google Scholar 

  • R. Albert, A.-L. Barabasi, Rev. Modern Phys. 74, 47 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • V. Sood, S. Redner, Phys. Rev. Lett. 94, 178701 (2005)

    Article  ADS  Google Scholar 

  • A. Barrat, M. Barthelemy, R. Pastor-Satorras, A. Vespignani, Proc. Natl. Acad. Sci. USA 101, 3747 (2004)

    Article  ADS  Google Scholar 

  • E. Ravasz, A.-L. Barabasi, Phys. Rev. E 67, 026112 (2003)

    Article  ADS  Google Scholar 

  • L.C. Freeman, Sociometry 40, 35 (1977)

    Article  Google Scholar 

  • M.E.J. Newman, Phys. Rev. E 74, 036104 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • A.-L. Barabasi, Nature 435, 207 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Tseng, J., Tai, C. et al. Network topology of an experimental futures exchange. Eur. Phys. J. B 62, 105–111 (2008). https://doi.org/10.1140/epjb/e2008-00119-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00119-8

PACS.

Navigation