Skip to main content
Log in

Singular scaling functions in clustering phenomena

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study clustering in a stochastic system of particles sliding down a fluctuating surface in one and two dimensions. In steady state, the density-density correlation function is a scaling function of separation and system size. This scaling function is singular for small argument — it exhibits a cusp singularity for particles with mutual exclusion, and a divergence for noninteracting particles. The steady state is characterized by giant fluctuations which do not damp down in the thermodynamic limit. The autocorrelation function is a singular scaling function of time and system size. The scaling properties are surprisingly similar to those for particles moving in a quenched disordered environment that results if the surface is frozen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Bray, Adv. Phys. 43, 357 (1997)

    Article  ADS  Google Scholar 

  2. N.V. Brilliantov, T. Pöschel, Kinetic Theory of Granular Gases (New York and Oxford, 2004)

  3. A. Puglisi, V. Loreto, U.M.B. Marconi, A. Petri, A. Vulpiani, Phys. Rev. Lett. 81, 3848 (1998)

    Article  ADS  Google Scholar 

  4. S.K. Das, S. Puri, Phys. Rev. E 68, 011302 (2003)

    Article  ADS  Google Scholar 

  5. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford, New York and Oxford, 1971)

  6. P.H. Coleman, L. Pietronero, Phys. Rep. 213, 311 (1992)

    Article  ADS  Google Scholar 

  7. M. Maxey, J. Fluid Mech. 174, 441 (1987)

    Article  MATH  ADS  Google Scholar 

  8. E. Balkovsky, G. Falkovich, A. Fouxon, Phys. Rev. Lett. 86, 2790 (2001)

    Article  ADS  Google Scholar 

  9. K. Gawedzki, M. Vergassola, Physica D 138, 63 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. J.M. Deutsch, J. Phys. A 18, 1449 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  11. B. Mehlig, M. Wilkinson, Phys. Rev. Lett. 92, 250602 (2004)

    Article  ADS  Google Scholar 

  12. D. Das, M. Barma, Phys. Rev. Lett. 85, 1602 (2000)

    Article  ADS  Google Scholar 

  13. D. Das, M. Barma, S.N. Majumdar, Phys. Rev. E 64, 046126 (2001)

    Article  ADS  Google Scholar 

  14. G. Manoj, M. Barma, J. Stat. Phys. 110, 1305 (2003)

    Article  MATH  Google Scholar 

  15. A. Nagar, M. Barma, S.N. Majumdar, Phys. Rev. Lett. 94, 240601 (2005)

    Article  ADS  Google Scholar 

  16. A. Nagar, S.N. Majumdar, M. Barma, Phys. Rev. E 74, 021124 (2006)

    Article  ADS  Google Scholar 

  17. S. Chatterjee, M. Barma, Phys. Rev. E 73, 011107 (2006)

    Article  ADS  Google Scholar 

  18. S. Mishra, S. Ramaswamy, Phys. Rev. Lett. 97, 090602 (2006)

    Article  ADS  Google Scholar 

  19. M. Shinde, D. Das, R. Rajesh, Phys. Rev. Lett. 99, 234505 (2001)

    Article  ADS  Google Scholar 

  20. S. Ramaswamy, R. Aditi Simha, J. Toner, Europhys. Lett. 62, 196 (2003)

    Article  ADS  Google Scholar 

  21. V. Narayan, S. Ramaswamy, N. Menon, Science 317, 105 (2007)

    Article  ADS  Google Scholar 

  22. G. Porod, in Small Angle X-ray Scattering, edited by O. Glatter, L. Kratky (Academic Press, New York, 1983)

    Google Scholar 

  23. T.M. Liggett, Interacting Particle Systems (Springer, 2000)

  24. S.F. Edwards, D.R. Wilkinson, Proc. R. Soc. London, Ser. A 381, 17 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Kardar, G. Parisi, Y.C. Zhang, Phys. Rev. Lett. 62, 89 (1986)

    Google Scholar 

  26. R. Lahiri, S. Ramaswamy, Phys. Rev. Lett. 79, 1150 (1997)

    Article  ADS  Google Scholar 

  27. R. Lahiri, M. Barma, S. Ramaswamy, Phys. Rev. E 61, 1648 (2000)

    Article  ADS  Google Scholar 

  28. D. Das, A. Basu, M. Barma, S. Ramaswamy, Phys. Rev. E 64, 021402 (2001)

    Article  ADS  Google Scholar 

  29. S. Ramaswamy, M. Barma, D. Das, A. Basu, Phase Transit. 75, 363 (2002)

    Article  Google Scholar 

  30. B. Drossel, M. Kardar, Phys. Rev. Lett. 85, 614 (2000)

    Article  ADS  Google Scholar 

  31. B. Drossel, M. Kardar, Phys. Rev. B 66, 195414 (2002)

    Article  ADS  Google Scholar 

  32. T. Bohr, A. Pikovsky, Phys. Rev. Lett. 70, 2892 (1993)

    Article  ADS  Google Scholar 

  33. C.S. Chin, Phys. Rev. E 66, 021104 (2002)

    Article  ADS  Google Scholar 

  34. M. Gopalakrishnan, Phys. Rev. E 69, 011105 (2003)

    Article  ADS  Google Scholar 

  35. S.N. Majumdar, C. Sire, A.J. Bray, S.J. Cornell, Phys. Rev. Lett. 77, 2867 (1996)

    Article  ADS  Google Scholar 

  36. B. Derrida, S.A. Janowsky, J.L. Lebowitz, E.R. Speer, J. Stat. Phys. 73, 813 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. A. Comtet, C. Texier, Supersymmetry and Integrable Models Proceedings, Chicago, IL, edited by H. Aratyn, T. Imbo, W.Y. Keung, U. Sukhatme (Springer, Berlin, 1998)

    Google Scholar 

  38. H. Chaté, F. Ginelli, R. Montagne, Phys. Rev. Lett. 96, 180602 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Barma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barma, M. Singular scaling functions in clustering phenomena. Eur. Phys. J. B 64, 387–393 (2008). https://doi.org/10.1140/epjb/e2008-00118-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00118-9

PACS

Navigation