Skip to main content
Log in

Monte Carlo methods for the study of phase transitions and phase equilibria

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Monte Carlo methods can predict macroscopic properties of N-body systems from the (classical) Hamiltonian describing the interactions between the particles and hence can serve as a basic tool of equilibrium statistical mechanics, avoiding uncontrolled approximations. However, a necessary ingredientis the control of finite size effects. For this purpose, the finite size scaling analysis of suitable distribution functions is a powerful tool. The basic ideas of this approach will be discussed, including extensions to critical phenomena where the hyperscaling relation between critical exponents is violated (colloid-polymer mixtures in random media as a realization of the random field Ising model, phase transitions caused by competition of interfacial and surface effects, etc.) Finite size effects on two-phase coexistence cause the existence of a van-der-Waals-like loop, but it has a completely different origin, the “spinodal” reflecting the “droplet evaporation/condensation” transition. Also the possibility to extract interface free energies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, Oxford 1958)

    MATH  Google Scholar 

  2. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, London 1982)

    MATH  Google Scholar 

  3. K.G. Wilson, J. Kogut, Phys. Rep. C 12, 74 (1974)

    Article  ADS  Google Scholar 

  4. M.E. Fisher, Rev. Mod. Phys. 46, 597 (1974)

    Article  ADS  Google Scholar 

  5. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd edn. (Clarendon, Oxford 1996)

    MATH  Google Scholar 

  6. K. Binder, D. Stauffer, Advanc. Phys. 25, 343 (1976)

    Article  ADS  Google Scholar 

  7. K. Binder, Rep. Progr. Phys. 50, 783 (1987)

    Article  ADS  Google Scholar 

  8. O. Penrose, J.L. Lebowitz, J. Stat. Phys. 3, 211 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  9. K. Binder, Phys. Rev. A 29, 341 (1984)

    Article  ADS  Google Scholar 

  10. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  11. K. Binder, in Phase Transitions and Critical Phenomena, edited by C. Domb, M.S. Green (Academic Press, London 1976) Vol. 5b, p. 1

    Google Scholar 

  12. The Monte Carlo Method in Statistical Physics, edited by K. Binder (Springer, Berlin 1979)

    Google Scholar 

  13. K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical Physics. An Introduction (Springer, Berlin 1988)

    MATH  Google Scholar 

  14. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulation in Statistical Physics (Cambridge Univ. Press, Cambridge 2000)

    Google Scholar 

  15. K. Binder, H. Rauch, Z. Phys. 219, 201 (1969)

    Article  ADS  Google Scholar 

  16. A.E. Ferdinand, M.E. Fisher, Phys. Rev. 185, 832 (1969)

    Article  ADS  Google Scholar 

  17. M.E. Fisher, in Critical Phenomena, Proc. 1970 E. Fermi Inst. School of Physics, edited by M.S. Green (Academic, New York 1971) p. 1

    Google Scholar 

  18. M.E. Fisher, M.N. Barber, Phys. Rev. Lett. 28, 1516 (1972)

    Article  ADS  Google Scholar 

  19. H. Müller-Krumhaar, K. Binder, Z. Phys. 254, 269 (1972)

    Article  ADS  Google Scholar 

  20. K. Binder, Z. Phys. B 43, 119 (1981)

    Article  ADS  Google Scholar 

  21. R.L.C. Vink, J. Horbach, J. Chem. Phys. 121, 3253 (2004)

    Article  ADS  Google Scholar 

  22. R.L.C. Vink, J. Horbach, K. Binder, Phys. Rev. E 71, 011401 (2005)

    Article  ADS  Google Scholar 

  23. R.L.C. Vink, K. Binder, J. Horbach, Phys. Rev. E 73, 056118 (2006)

    Article  ADS  Google Scholar 

  24. R.L.C. Vink, A. De Virgiliis, J. Horbach, K. Binder, Phys. Rev. E 74, 031601 (2006)

    Article  ADS  Google Scholar 

  25. S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954)

    ADS  Google Scholar 

  26. K. Binder, D.P. Landau, Phys. Rev. B 30, 1477, (1984)

    Article  ADS  Google Scholar 

  27. C. Borgs, R. Kotecky, J. Stat. Phys. 61, 79, (1990)

    Article  ADS  MathSciNet  Google Scholar 

  28. E. Brézin, J. Phys. (Paris) 43, 15 (1982)

    Article  Google Scholar 

  29. Y. Imry, S.-K. Ma, Phys. Rev. Lett. 35, 1399 (1975)

    Article  ADS  Google Scholar 

  30. M. Schwartz, Europhys. Lett. 15, 777 (1991)

    Article  ADS  Google Scholar 

  31. Spin Glasses and Random Fields, edited by A.P. Young (World Scientific, Singapore 1998)

    Google Scholar 

  32. K. Eichhorn, K. Binder, Europhys. Lett. 30, 331 (1995)

    Article  ADS  Google Scholar 

  33. P.G. de Gennes, J. Phys. Chem. 88, 6469 (1984)

    Article  Google Scholar 

  34. R.L.C. Vink, K. Binder, H. Löwen, Phys. Rev. Lett. 97, 230603 (2006)

    Article  ADS  Google Scholar 

  35. K. Binder, M. Nauenberg, V. Privman, A.P. Young, Phys. Rev. B 31, 1498 (1985)

    Article  ADS  Google Scholar 

  36. K. Binder, Z. Phys. B 61, 13 (1985)

    Article  ADS  Google Scholar 

  37. E. Brézin, J. Zinn-Justin, Nucl. Phys. B 257, [FS14] 867 (1985)

    Article  ADS  Google Scholar 

  38. E. Luijten, K. Binder, H.W. Blöte, Eur. Phys. J. B 9, 289 (1999)

    Article  ADS  Google Scholar 

  39. A. Milchev, M. Müller, K. Binder, Phys. Rev. E 73, 031603 (2005)

    Article  ADS  Google Scholar 

  40. A.O. Parry, A. J. Wood, C. Rascon, J. Phys.: Condens. Matter 13, 4591 (2001)

    Article  ADS  Google Scholar 

  41. V. Privman, M.E. Fisher, J. Stat. Phys. 33, 285 (1983)

    Article  MathSciNet  Google Scholar 

  42. M.S.S. Challa, D.P. Landau, K. Binder, Phys. Rev. B 34, 1841 (1986)

    Article  ADS  Google Scholar 

  43. K. Binder, Phys. Rev. A 25, 1699 (1982)

    Article  ADS  Google Scholar 

  44. L. Onsager, Phys. Rev. 65, 117 (1944)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. B. Berg, Th. Neuhaus, Phys. Rev. Lett. 68, 9 (1992)

    Article  ADS  Google Scholar 

  46. P. Virnau, M. Müller, J. Chem. Phys. 120, 10925 (2004)

    Article  ADS  Google Scholar 

  47. K. Binder, Physica A 319, 99 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  48. K. Binder, M.H. Kalos, J. Stat. Phys. 22, 363 (1980)

    Article  ADS  Google Scholar 

  49. H. Furukawa, K. Binder, Phys. Rev. A 26, 556 (1982)

    Article  ADS  Google Scholar 

  50. L.G. MacDowell, P. Virnau, M. Müller, K. Binder, J. Chem. Phys. 120, 5293(2004)

    Article  ADS  Google Scholar 

  51. M. Biskup, L. Chayes, R. Kotecky, Europhys. Lett. 60, 21 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bindera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bindera, K. Monte Carlo methods for the study of phase transitions and phase equilibria. Eur. Phys. J. B 64, 307–314 (2008). https://doi.org/10.1140/epjb/e2008-00109-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00109-x

PACS

Navigation