Skip to main content
Log in

Thermalisation by a boson bath in a pure state

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

We consider a quantum system weakly coupled to a large heat bath of harmonic oscillators. It is well known that such a boson bath initially at thermal equilibrium thermalises the system. We show that assuming a priori an equilibrium state is not necessary to obtain the thermalisation of the system. We determine the complete Schrödinger time evolution of the subsystem of interest for an initial pure product state of the composite system consisting of the considered system and the bath. We find that the system relaxes into canonical equilibrium for almost all initial pure bath states of macroscopically well-defined energy. The temperature of the system asymptotic thermal state is determined by the energy of the initial bath state as the corresponding microcanonical temperature. Moreover, the time evolution of the system is identical to the one obtained assuming that the boson bath is initially at thermal equilibrium at this temperature. A significant part of our approach is applicable to other baths and we identify the bath features which are requisite for the thermalisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • For a discussion of the subtleties arising from a finite system-bath coupling, see P. Hänggi, G.-L. Ingold, Acta Phys. Pol. B 37, 1537 (2006)

    Google Scholar 

  • B. Diu, C. Guthmann, D. Lederer, B. Roulet, Physique statistique (Hermann, Paris, 1989)

  • H. Tasaki, Phys. Rev. Lett. 80, 1373 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • J. Gemmer, G. Mahler, Eur. Phys. J. B 31, 249 (2003); J. Gemmer, A. Otte, G. Mahler, Phys. Rev. Lett. 86, 1927 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  • S. Goldstein, J.L. Lebowitz, R. Tumulka, N. Zanghì, Phys. Rev. Lett. 96, 050403 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • W. Zurek, Phys. Rev. D 26, 1862 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  • T. Endo, J. Phys. Soc. Jpn. 56, 1684 (1987); T. Endo, J. Phys. Soc. Jpn. 57, 71 (1988)

    Article  ADS  Google Scholar 

  • P. Borowski, J. Gemmer, G. Mahler, Eur. Phys. J. B 35, 255 (2003)

    Article  ADS  Google Scholar 

  • U. Weiss, Quantum dissipative systems (World Scientific, Singapore, 1993)

  • H. Grabert, P. Schramm, G.-L. Ingold, Phys. Rep. 168, 115 (1988); H. Grabert, P. Schramm, G.-L. Ingold, Phys. Rev. Lett. 58, 1285 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  • C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Processus d'interaction entre photons et atomes (CNRS Editions, Paris, 1988)

  • S. Camalet, R. Chitra, Phys. Rev. B 75, 094434 (2007)

    Article  ADS  Google Scholar 

  • S. Dattagupta, H. Grabert, R. Jung, J. Phys.: Condens. Mat. 1, 1405 (1989)

    Article  ADS  Google Scholar 

  • F. Haake, Quantum signatures of chaos (Springer, Berlin, 2001)

  • V. Čápek, Eur. Phys. J. B 25, 101 (2002)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Camalet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camalet, S. Thermalisation by a boson bath in a pure state. Eur. Phys. J. B 61, 193–199 (2008). https://doi.org/10.1140/epjb/e2008-00065-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00065-5

PACS.

Navigation